
Termcal.sty—printing a class calendar∗

Bill Mitchell

January 8, 2014

Abstract

This package is intended to print a term calendar for use in plan-
ning a class. It has a flexible mechanism for specifying which days of
the week are to be included and for inserting text either regularly on
the same day each week, or on selected days, or for a series of con-
secutive days. It also has a flexible mechinism for specifing class and
nonclass days. Text may be inserted into consecutive days so that it
automatically flows around nonclass days.

1 Description

The main command in this package is the calendar environment. Fig-calendar

ure 1 shows an example of its use, which might be suitable for a Monday-
Wednesday-Friday class with a Thursday recitation in a mercifully short
term. The LATEX input to generate it is given in figure 2.

Figure 1: Example of the use of the calendar environment

Figure 2: LATEX input for Figure 1

The two arguments to the calendar environment are the starting date, in
the format m/d/y, and the number of weeks to be printed. The contents of

∗Version: 1.8. Date: 1997/01/11. Documentation: 1996/01/10

1

the environment describe what is to appear in the calendar. The commands
fall into two classes: those which specify what is to be printed on a particular
day in each week, and those which specify what is to be printed on specific
days during the term.
The commands which specify what each week is to look like are \calday

and \skipday. These commands specify the days of the week in order; thus
there should be seven of them (athough ten may be prefered for a course
covering the French revolution). The macro \skipday simply declares that\skipday

the corresponding day should not be printed in the exam; thus the sample
calendar has boxes only for Monday, Wednesday, Thursday, and Friday. The
macro \calday[optional head]{option list} is used to specify a day which\calday

is to be printed. The required argument option list is a (possibly empty)
list of TEX commands which are executed before the text for that day is
printed. It can (at least in principal) include any LATEX command, but several
commands, described below, are provided specifically for this purpose. The
optional argument is the text of a heading for that day which will at the top
of each page of the calendar.

Available options. The macros \classday and \noclassday declare that\classday

\noclassday the specified day is, or is not, a class day. Days specified as class days
are numbered and can be refered to by their numbers. The command
\weeklytext{text} specifies that the indicated text should appear every week\weeklytext

in the box for that day. The text may include TEX commands; for example
the following could be used to number regular Monday quizes:

\weeklytext{\stepcounter{quiznumber} Quiz~\arabic{quiznumber}}

Options for a specific day are specified by the command \options{day}{option
list}. The option list argument is exactly the same as for \calday. The op-\options

tions added by \options are executed after those for \calday, and thus
may be used to modify or nullify for a specific day the general instructions
specified for a particular day of the week. If there no quiz is planned for Hal-
loween then \options{10/31/94}{\weeklytext{}} could be used to supress
printing the usual weekly message.
There are two ways of specifing the day argument of \options. First, the
date may be specified, in the format m/d/y; for example

\options{11/11/94}{\noclass}

2

specifies, that November 11th, Veterans’s day, is not a class day. The second
method of specifying the date is by its number:

\options{C6}{\weeklytext{}}

would supress the normal text on the sixth day of class. Of course, only days
specified as class days can be addressed in this style.

Inserting Text. There is a similar provision for text to be printed on a
specific day, using the command \caltext. The command\caltext

\caltext{10/31/94}{Halloween\\No Quiz!}

will print the indicated message on October 31, and \caltext{C6}{Hour Exam}

will print the indicated message on the sixth class day.
Two extra commands are provided to simplify the job of entering text for
consecutive class days, as in specifying the lecture topic or homework for each
day. The command \caltexton{class day}{text} specifies a starting day and\caltexton

\caltextnext inserts the indicated text on that day. The command \caltextnext{text}
can then be used to print text on successive class days. The command
\caltextnext{}, with an empty argument, may be used to skip days.

1.1 Modifying the style of the calendar

Several parameters and commands will allow some modfication of the style
of the entire calendar. The size of the calendar is specified by \calboxdepth,\calboxdepth

which specifies the minimum height of the box for each day, and \calwidth\calwidth

which specifies the width of the calendar. The defaults are 1 inch for
\calboxdepth and \textwidth for \calboxwidth.
The printing of the date and classnumber in each box is done by the com-
mands \calprintdate and \calprintclass. The default definitions of these
macros are as follows:

\calprintdate

1 \newcommand{\calprintdate}{%

2 \ifnewmonth\framebox{\monthname\ \ordinaldate}%

3 \else \ordinaldate\fi

4 }

\calprintclass

5 \newcommand{\calprintclass}{\textbf{\small\theclassnum}}

3

They may be changed with \renewcommand.
By default the calendar will automatically be split over several pages. This
can be avoided by putting the entire calendar in a \vbox. It will normally
also be necessary to change \calboxdepth so that the calendar will fit on
one page.

2 The Code

6 \ProvidesPackage{termcal}[\filedate\space\fileversion\space

7 Latex2e package to print a Term calendar]

8 \NeedsTeXFormat{LaTeX2e}

We use the package longtable so that the calendar can be split over several
pages if desired.
9 \RequirePackage{longtable}

10 \RequirePackage{ifthen}

Parameters determining the size of the calendar.
11 \newlength{\calboxdepth}\setlength\calboxdepth{1in}

12 \newlength\calwidth\setlength\calwidth{\textwidth}

13 \newlength{\ca@boxwidth} %% set by \endcalendar

The following parameters are used to control the construction of the calendar.
ca@dpw The number of days used in a week.

14 \newcounter{ca@dpw}

ca@numwks The number of weeks in the calendar.

15 \newcounter{ca@numwks} %% weeks in calendar

ca@wknum Used to keep track of the current week.

16 \newcounter{ca@wknum}

\ca@doaweek Two token boxes used to build up the basic contents of the calendar.
\ca@doaweek is built up by \calday, and prints a typical week. It will
be filled up by the macros \calday and \skipday.

17 \newtoks\ca@doaweek

\ca@doweeks This will be essentially ca@numwks copys of \ca@doaweek.

18 \newtoks\ca@doweeks

4

\ca@colhead

\ifca@chead

The column headings which appear at the top of every page is collected in
the token box \ca@colhead by \calday. The switch \ifca@chead is set to
true if any such column heads are specified.

19 \newtoks\ca@colhead

20 \newif\ifca@chead

calendar This is the basic environment. The \calendar command only saves the
parameters and initializes some counters.

21 \newenvironment{calendar}[2]%

22 {%

23 \setcounter{ca@numwks}{#2}

24 \setdate{#1}

25 \setcounter{ca@dpw}{0}

26 \setcounter{classnum}{1}

27 }

The calendar is actually created in the code for \endcalendar. It will be
printed as a longtable. Since the longtable and tabular environments don’t
work well with loops in their body, we will build up the body in a token box,
\ca@doweeks.

\ca@doweeks

28 {

29 \ifca@chead\ca@doweeks{\the\ca@colhead\endhead\hline\hline}\fi

30 \setcounter{ca@wknum}{0}

31 \whiledo{\value{ca@wknum}<\value{ca@numwks}}%

32 {\stepcounter{ca@wknum}%

33 \addtotoks{\ca@doweeks}{\the\ca@doaweek\\\hline}}

Now we calculate the widths of the boxes, using a formula from the Latex
Companion.

34 \ca@boxwidth=\calwidth

35 \divide\ca@boxwidth by \c@ca@dpw\relax

36 \advance\ca@boxwidth by -2\tabcolsep\relax

37 \setlength\@tempdima\arrayrulewidth\relax

38 \multiply\@tempdima\c@ca@dpw\relax

39 \advance\@tempdima\arrayrulewidth\relax

40 \divide\@tempdima\c@ca@dpw\relax

41 \advance\ca@boxwidth by -\@tempdima\relax

Now we use the longtable environment to print out the calendar.

5

42 \begin{longtable}[l]

43 {|%

44 *{\theca@dpw}{p{\ca@boxwidth}|}%

45 @{}}%

46 \hline

47 \the\ca@doweeks

48 \end{longtable}}

\addtotoks The first argument is a tokenbox, and the second argument is a list of tokens
to be added to the end of its current contents.

49 \newcommand\addtotoks[2]{#1\expandafter{\the#1#2}}

\calday Now the commands used to build up a typical week. They work by filling up
the token box \ca@doaweek. We also fill up the token box \ca@colhead to
give column headings.

50 \ca@doaweek={\stepcounter{ca@wknum}%

51 \ignorespaces}

52 \newcommand\calday[2][]{\stepcounter{ca@dpw}%

53 \ifca@fday\addtotoks\ca@doaweek{&}\addtotoks\ca@colhead{&}\fi

54 \addtotoks\ca@doaweek{\ca@doaday{#2}}

55 \def\@tempa{#1}\ifx\@tempa\@empty

56 \else\addtotoks\ca@colhead{\strut\scshape\centering #1}\ca@cheadtrue\fi

57 \ca@fdaytrue

58 }

\ifca@fday Is it the first day? This determines whether & needs to be added as a sepa-
rator.

59 \newif\ifca@fday

\skipday

60 \newcommand\skipday{\addtotoks\ca@doaweek{\advancedate}}

After a couple of preliminaries, we will define the command \ca@doaday

which is actually prints out the text for each day of the calendar.

classnum This is the counter used to keep track of class days. It is initialized to 1 in
the beginning of the calendar environment.

61 \newcounter{classnum}

6

\ca@normbs The meaning of \\ is changed by the longtable environment. We save its
standard meaning so that it can be used in the text to be printed in the
calendar boxes.

62 \let\ca@normbs=\\

\ca@doaday The command \ca@doaday does the actual printing of the contents of the
box for each day. First the options are read, in the following order: options
specified in the argument to \calday, then options specified by date, and
finally options specified by classday.

63 \newcommand\ca@doaday[1]{

64 \hbox{\vrule depth \calboxdepth height 0pt width 0pt\vtop{

65 #1% %options specified by |\calday|

66 \csname\curdate options\endcsname% % options specified by date

67 \ifclassday\csname C\theclassnum options\endcsname\fi %by classnumber

Then the heading is printed.

68 \hbox to \hsize{\calprintdate\hfill\ifclassday\calprintclass\fi}

69 \vspace{2pt}

Now we are ready to print the text. We do it inside a group in which the
normal meaning of \\ is restored.

70 \begingroup

71 \let\\=\ca@normbs

72 \raggedright

73 \sloppy

74

75 \the\weeklytext\par

76 \csname\curdate text\endcsname

77 \ifclassday\csname C\theclassnum text\endcsname

78 \stepcounter{classnum}\fi

79 \endgroup

80 }} % end of hbox containing the days calendar text.

Finally we advance the date. The command \advancedate will set
\newmonthtrue if appropriate.

81 \global\newmonthfalse

82 \advancedate

83 }

7

2.1 Options

The options and text for the individual days are stored in macros, the names
of which are built up using the days or classnumber for which the option
is intended. We will define it using the macro \options so that multiple
\options statements may be used for the same day.

\ca@addmacro The first argument is the name of a macro (without the backslash) and the
second is a sequence of tokens to be added to its definition. This is taken
from the TeXbook, exercise 20.15. Note that the spaces in the last line are
essential.

84 \long\def\ca@addmacro#1#2{

85 \expandafter\ifx\csname#1\endcsname\relax%

86 \expandafter\def\csname#1\endcsname{#2}

87 \else

88 \toks0=

89 \expandafter\expandafter\expandafter{\csname#1\endcsname}

90 \toks2={#2}

91 \expandafter

92 \edef\csname#1\endcsname{\the\toks0 \the\toks2 }\fi}

\options \options#1#2 adds the tokens in the second argument to the macro with
the name \csname #1options\endcsname.

93 \newcommand\options[1]{\ca@addmacro{#1options}}

Now the code for the varions options.

\ifclassday

\classday

\noclassday

A switch determines which days are class days.

94 \newif\ifclassday

95 \newcommand{\classday}{\classdaytrue}

96 \newcommand{\noclassday}{\classdayfalse}

\ifusingmonth

\usingmonthtrue

This switch is used in \ca@doaday to decide whether the name of the month
will be printed every day.

97 \newif\ifusingmonth

\weeklytext This token box holds the standard text for each day of the week.

98 \newtoks\weeklytext

8

\caltext This macro works like \options to save the text for a specific day, saving the
text in a macro with the name \csname #1text\endcsname. We add \par

after the text, so successive texts for the same day start on separate lines.
We use \par instead of \\ since it is harmless if it is unneeded (but requires
that \ca@addmacro be long).

99 \newcommand\caltext[2]{\ca@addmacro{#1text}{#2\par}}

textdaycount

\caltexton

\castextnext

The commands \caltexton and \caltextnext use \caltext with the day
determined by the counter textdaycount.

100 \newcounter{textdaycount}\setcounter{textdaycount}1

101 \newcommand\caltexton[2]{\setcounter{textdaycount}{#1}

102 \caltext{C#1}{#2}}

103 \newcommand\caltextnext[1]{\advance\c@textdaycount by 1

104 \caltext{C\thetextdaycount}{#1}}

2.2 Macros concerned with date calculations

Now we have a selection of macros which are concerned with calculating the
dates in the calendar.

date Counter for the day of the month.

105 \newcounter{date}

month Counter for month (January = 1)

106 \newcounter{month}

year Counter for year.

107 \newcounter{year}

\curdate Print out the date.

108 \newcommand\curdate{\arabic{month}/\arabic{date}/\arabic{year}}

\monthname Print the name of the Month.

109 \newcommand\monthname{\ifcase\c@month\or Jan\or Feb\or Mar\or Apr%

110 \or May\or June\or July\or Aug\or Sep\or Oct%

111 \or Nov\or Dec\fi}

\advancedate Move the date forward by one day.

112 \newcommand\advancedate{\stepcounter{date}

113 \ifnum\thedate>\monthlength\relax

114 \addtocounter{date}{-\monthlength}\advancemonth\fi}

9

\ifnewmonth True if no days have been printed during the current month.

115 \newif\ifnewmonth\newmonthtrue

\advancemonth

116 \newcommand\advancemonth{%

117 \global\newmonthtrue\stepcounter{month}

118 \ifnum\c@month>12

119 \stepcounter{year}\setleap\setcounter{month}1\fi}

\ifleap True if the year is a leap year.

120 \newif\ifleap

\setleap Determine whether the year is a leap year. Note that 2000 is a leap year, so
this is correct until 2100 by which time the next version should be out.

121 \newcommand\setleap{%

122 \@tempcnta=\c@year

123 \divide\@tempcnta by 4 \multiply\@tempcnta by 4

124 \ifnum\@tempcnta=\c@year\global\leaptrue

125 \else\global\leapfalse\fi}

\monthlength Determine the number of days in the current month.

126 \newcommand\monthlength{%

127 \ifcase\c@month\or31\or\ifleap29\else28\fi

128 \or31\or30\or31\or30\or31\or31\or30\or31\or30\or31\fi%

129 \relax}

\setdate Take argument in the form m/d/y and set the counters month, date and year.

130 \newcommand\setdate[1]{\setdate@#1!}

131 \def\setdate@#1/#2/#3!{

132 \setcounter{month}{#1}

133 \setcounter{date}{#2}

134 \setcounter{year}{#3}

135 \global\newmonthtrue\setleap}

\ordinaldate Print the day of the month as an ordinal.

136 \newcommand\ordinaldate{\ordinal{\c@date}}

\ordinal Print the contents of a register as ordinal number.

137 \newcommand\ordinal[1]{%

138 \let\last@=\relax\let\last@@=\relax

10

139 \expandafter\@rd\the#1x}

140 \newcommand\@rd[1]{\ifx#1x\if\last@@1th\else\@rdend{\last@}\fi\else

141 \let\last@@=\last@\def\last@{#1}#1\expandafter\@rd\fi}

142 \newcommand\@rdend[1]{\ifcase#1 th\or st\or nd\or rd\else th\fi}

11

