§5 Strong Sequences and Elementary Embeddings
In this section we return to the model K(F), where &F 1is a strong
sequence. Qur principal aim is to prove two basic theorems about K(F):

5.1 Theorem: 1If F is strong then K(F r(K,h)) T K(F) f£for all pairs

(5,0).

5.2 Theorem: If & 1is strong and J:K(¥) - Q 1is an iterated ultrapower

then j(F) 1is strong and Q = R{j(F)).

These theorems will be corollaries of a more general result, Lemma 5.5,
In order to state Lemma 5.5 in the generality which will be required in the

next section we will first give some definitions.

5.3 Definition: (i) If j:M - N is an elementary embedding and § € N then

<w

3.

N 1is j-generated from & if N = {j(f)(x): fE€ M and x € &

(ii) If J:M - N is j-generated from &, M* DM, § < j(K), and

M* N P(K) © M then j%:M*¥ = N* is defined as follows: If £ € M* and

k € 6<u} then [(f,x)]

#

{(£',x"): £ M, x' € 5<w‘, and

£9(whHl). We say [(£,x)]E[(£’,x")] if

(X,X’) € j({wswl): £(w)
(x,x') € j({(w,w'): f(w) € f'(w')}). Ther N* is the class of equivalence
classes [(f,x)]. If N* is well founded under E then we will identify

it with its transitive collapse.

K K
If 3:M=M /U then M /U 1is j-generated from X +1. More generally,
if j:M~—» N 1is an iterated ultrapower them N 1is j generated from the

least © larger than all of the indiscernibles generated by j.
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If j:M= N is an iterated ultrapower then j*:M* - N¥ s simply the
iterated ultrapower of M* by the same ultrafilters as used for M. Notice
that the condition M* N P(X) © M implies that the ultrafilters in M are
still ultrafilters in M*. 1In this case, N* will necessarily be well

founded.

™

5.4 Proposition: If & 1is strong, 3'[\3(3) =T, and F' is an ultrafilter

sequence above A(F) in K(F') then F' 4is strong and P(ﬂ(ﬁ))r1K(3’)C:K(3).

Proof: That P(LEF)) N K(E')‘: K(F) can be proved in the same way as 3.10(iv)
was proved. It follows that & = Eirﬁ(ﬁj is an ultrafilter sequence in

K(F'), and hence 3’ is strong. C

5.5 Lemma: Suppose & is strong, ¥ 1is a set, j:K(F) = Q is an elementary
embedding such that Q 1s j generated from J(A4(F)), and for all strong

-t r/ . F ’ * .
sequences & such that JF/ &(F) =F, if i17T:K(F) - §° 1is the extension
of i to R(F') then QF 1is well founded. Then for all & < J(A(F))

every j(ﬁ)[é mouse is in Q.

Lemma 5.5 is the promised general result. Before proving it we use it

to prove Theorems 5.1 and 5.2,

Proof of 5.1 and 5.2: If & 1is a set then Theorem 5.1 follows immediately

from 5.5 by taking j:K(F) = K(E)K/S(K,h) and & = K+1, To prove Theorem 5.2
we observe that Q F V=RK(i(&F)), so Q< E(j(F)). By applying Lemma 5.5

with & = j(4(F)) we see that K(J(F)) € Q, so Q = K(j(F)).

To apply Lemma 5.5 we have to verify that the hypothesis is satisfied.
1f 3’ is a strong extension of & then j*:K(E‘) - Q* is an iterated
ultrapower. Since K(F') |= (3’ is an ultrapower sequence) by Proposition 5.%,

every iterated ultrapower of R(F') lying in R(F') 4is well founded. An
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absoluteness argument then shows that every iterated ultrapower of K(JF')
is well founded (see [Mitchell, 1974], Lemma 2.1), so 0% 1is well founded

as required.

If ¥ 1is not a set then we can prove 5.1 and 5.2 by picking v with
j(v) > 8 and applying Lemma 5.5 to the iterated ultrapower j’:K(Erv) - Q'
which is obtained by using the same ultrafilters on ordinals less than v
as for j, and skipping ultrapowers by ultrafilters on ordinals larger

than wv. 0 5.1, 5.2

Proof of 5.5: Suppose that X, j, Q and 8 are as given and that M 1is

a j(g)ré-mouse. We will show that M€ Q. We can assume that 6M =3

otherwise we could replace j by
. j. .k
3TKE) = Q= ultg (Q,F(K,0)) = Q
M

where X is the least ordinalrgreater than A such that Cj(g)(K) > 0.
Then j'(E)r5M=j'(3)r6, so M& Q if M€ Q' because k € Q. Also
we can assume that Q 1is j generated from 5§ since otherwise we could
replace j by j:R(@) - @, where Q' 1is the transitive collapse of

{3(E3(v): v<8 and f € K(F)}.

We will recursively define a sequence JF’ such that

(1) 3’r£(3)+1 =37,

(2) for all (K,\) € domain (F'), if ¥ > L4(3) then F’'(K,\) 1is a
countably complete K(?'r(K,l)) ultrafilter, and

(3) For all X > &(F). PK) NE(F*) = P(K)QK(S'I‘K+1).

Note that (2) implies that F' is strong above 4(F) by Theorem 3.11.

It follows that if K > 4(F) then PUONKIHICKE [€+1), so for (3)



we only need to show that R(K) nK(EJrK +1)CR(F"). A sufficient (and,

in fact, necessary) condition for this to hold is that

(3" 1If MH <t'<K < 4F'Yy, N is a 3’[*‘5’+1 mouse, and
(SN =K' U sup {6\’: vy < Kl!} then there is an iterated-ultrapower k:N - N’
such that N’ is a B«’fK'+1-mouse.

We will define 3’ recursively so that F' satisfies (1), (2) and
(3’). Then we will use an argument using Proposition 2,21 to show that

the definition of ¥ must stop at some ordinal K. The construection will

be such that it can only stop if ME Q; hence we can conclude that, as claimed,
ME Q.
We start the definition of &’ by setting 3'{3(3) = F, so (1) holds.

Now suppose K > £(F) and suppose Z"T?C has already been defined so that

(2) and (37) hold at all «’ < k. We show how to defime 3’ at k. Let

K . K . s
j :K(F') = Q be the extension of j to XK(F fK) given in Definition 5.3(ii).

Now let M = Jg and use the technique of the proof of Theorem 3.3, Part 1,

to find an ordinal v and iterated ultrapowers of length v

K K i
kv:Q Qv
iK:M - MK'
v v

. KK K, Ko_ LK . KK k
so that if 3*'\) = k\)(] (F rK)) and (}v 1\)(@) then either 3\) = f}\)fﬂ(?\))

or else C}i = ES )\z(q\f).

K K K -
We claim that if Q\) = 3\; fﬂ.((}v) then M & Q; in this case we can

s , , - K -t |8
simply terminate the construction. 1If C}V = dvfa(qv> then

QKI

£ %
M= J&\) £ L(E\J), so ME Q\,- Then M, the transitive collapse of the Z’l
v
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K K
skolem hull of & U iﬁ(PM) in MQ, is also in Qv' But M can be coded
[ K
by a subset of § and kvr6 = id so R@E) N QE C,QK and hence ME Q.

But ©(5) N QK T Q, s0 MZ Q.

K K K K
For the rest of the proof we will assume M & Q. Thus eri\Jj (x) = Ev.

3’
We set o (K) = 0 unless
K K
(&) j (K) = kv(K) =K =wv and au <wv for all p<wv.

Here (a ,b ) is, as in the proof of Part 1 of Theorem 3.3, the least pair

n'n
at which QK and EK differ. If (4) holds then set & = EK, G = QK, and
B B v W Y Y
i, = kij, and define U(v,B) = {x € P(v)ﬂK(E’fK): i(x) € C}v(v,jm(ﬁ))}
G

v(v). We will set JF'(v,B) equal to

G
U(v,p) for all B such that j (B) < o Y(v) and B satisfies (5) and (6)

I
below. 03 {v) 1is defined to be the least ordinal such that one of these

for all R such that jv(g) < o

conditions fails.

Y
(5) U(v,B) 1is a countably complete K(E"(v,ﬁ)) ultrafilter

sequence,

(6) If A(F) <K'<k and N isa FT(k’'+1)-mouse with

J ++ Iy
@ IN‘ = k") in K( (k" +1)) then there is an iterated
. }:‘ ~ /
ultrapower k:N = N = JT such that Hj(v,g) = F [(v,B) and

H(v,B) = U{v,B) or else H = EIFT and T < V.

This completes the definition of F‘. We have seen that if M @
then the construction never terminates. We will complete the proof that
M€ Q and hence the proof of Lemma 5.5 by showing that the assumption

Mg Q also implies that the construction terminates. This contradiction

will show that M & Q.
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L. K
The proof will use the fact that the maps ivjv and Lc\J are essentially

K K
independent of K. Suppose €' < K; then j :K(E'[K) - 0 is the extension
* 7
o 8 . . P .
to K(&'{K) of jK K(F fm )2 Q . In particular if X igs regular in
r [

. . K K K
R(&F rK 3 then jK(K') =3 (') and Q and Q have the same subsets

K K’ K
of & for any § < jK(Kr). It follows that i =i and k is the
va uK; VK!
. «’ K , K
extension of k to @ . Hence we can drop the superscript ¥ £from i,

Vo
K
K K
We will also drop the superscript K from jv and kv' To sea what is

going on here, define Jj*:RK(&") = Q*, kv:Q* - Qv’ and iv:M - ﬂu exactly
like jK, k: and ii were defined from K(S'FK). Then 3%, k, and i
agree with jm, ki and iﬁ on the part of their domain which was used to
define F'(v,A). Thus we can define 3’ from i*, kv and iv’ and this

is the definition which we will actually be using. We could not have used

this as the primary definition, though, because it would have been circular.

Start with T = {v € ON: e¢f(v) > w}. We will use Propositionm 2.21 and
related arguments repeatedly to shrink T to smaller stationary subclasses
with special properties. Eventually these proﬁerties will be strong enough
to conclude that IT° is empty, contradicting the fact that T is still
stationary. This contradiction will show that our assumption that the
construction never terminates is false and hence complete the proof of Lemma 5.5.
Variables v and v’ always range over all members of the current class T
thus the statement "P(v,v')" means that every pair wv,v’' &€ T (or, depending
on the context, every pair v,v' with v < v’ or every pair

with v’ < v) has the property P.

Claim 1: T can be shrunk so that i , (') =v, i (b ,) =b , and a = v,
e v’y vive Ty v v

Proof: We have v < 8, = MQ’ bv € MQ and M is a set so Propositionm 2.21



allows I' to be shrunk so that i , (V') =v and i, (b ) =5 . Now
vy viviy \

7

. . = > . = ’ >
v < a would imply 1vv’(v) v for v v but 1vv;(v) v v, S0

we must have v = a - M claim 1

Claim 2: T° can be shrunk so that for some fixed pu and all v €T,

kpm(v) = v,

Proof: There are B, < v and Yy, £v so that kqu(Yv) = v, We can shrink
T so that H, = n is constant. TIf Y, =V then kpy(v} = v, so if the
claim is false then we can shrink T so that Y, <V for all v in T,

We can shrink I° further so that Y, =Y is constant and hence kvzv(v') = v,

[

v
. si i =vi>w
() Since lvv’(v) v s

In particular kvv’(v) > v, 80 b\J < 0

G

N
<< i - b1
bv o {(v) as well so there is }i;\J v such that Qv(v’bv) and Jv(v,bv)
digsagree on Xv' As in Theorem 3.3 we can shrink T so that

kvv'(xv) = lvv'(xv) =X - and conclude that Xv € dv(v,bv) iff v € X,

iff Xv € Qv(v,bv), contrary to the choice of Xv' = Claim 2

Claim 3: T can be shrunk so that jv(v) = v.

Proof: We will first show that there are fixed ordimals + and T such
that T can be shrunk so that for v £ T° there is. fv:T - ON in K(F")
guch that v = jv(fv)(n) and jv(T) <v. Pick p by Claim 2 so that

kuv(v) =v for all v €T. We can pick T so that aY < ju(r) for all

vy< 11 and we can shrink T so that v > ju(T) for v &,

Now every ordinal in Qv has the form jv(f)(x) where f € R(F')

and x is a finite subset of & U &1uf: u' < u}. In particular for each



R LR S R R B e il i

v in T’ we can code x Dby an ordinal and hence find f\J € K(F') and

= 3 . i <
ﬂv < p such that v Jp(fv)(ﬂv) Since ﬂv n for all v, we can
shrink T so that ﬂv =T is comnstant. But then kpm(ﬂ) =T for all w,

v(v) =y and M, T and £, are as

so I (E)(M) =k (3 (F)(M) = &

required.
. ko s r . s < A
Now define fv Jv(fv)ftg < Jv(T).Jv(fv)(g) v}, We will show that
T can be shrunk so that £%, = £*. We have £ € Q and Qv satisfies
W v v W

the sentence "V = K(F )", so f£f* is in an ¥ v mouse N in Qv' But
v v v

Mp is an Evr'v mouse and by assumption R% q Qv' It follows that

N < F&, S0 fj € Mé. Since M is a set we can use Proposition 2.21 to

shrink T so that i , (£f%/) = £*. But i , [ v’ =1id and £*,C 7xv’.
v it Ty v YRRV, v

Since T < v' it follows that f£* =1 , (£%,) = £%,.
Y PRV v

Now take v’ < v im T and let B, be the least ordinal such that
for some ordinal £, B, = fv(i) # fv,(g). Clearly jv(Bv) < v, since
JLED(M = v and (£ D) =k, (J (£ D) = k\)r\)(\)')<'2<\J 7, (V) = v
But jv(Bv) 4 v, since otherwise we would have f:(E) = jv(Bv) # fj:(g).
Hence v = jv(Bv)' Now Bv < v, and Bv 4 v since otherwise we could
shrink T so that B, = B 1is constant and hence v = kv;v(v') < v. Hence

B, =V and so jv(v) = v, T claim 3

We now know that if v €T then i (v) = v > LF) and v =a > a for
v ' S
all p<wv. Hence (4) is satisfied at v. Also jv(o3 (v}Y=o v(v) =bv-<o v(v),
i
so either (5) or (6) must fail for B = Bv = 03 (v). Set

VW\) = U(\J’B\)) = {XC Vi j‘J(X) e q\)(v’j‘d(s\’)}‘

Claim 4: T can be shrunk so that Wv is countably complate.
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Proof: Otherwise let Xv n be a sequence of sets in Wv such that
3

= 0. Then, as with fj in Claim 3, j

(X Y& M for all
vt ,n v

ﬁnew £ 0

'r\ " L] ] - = -
wE€T and n€ @ and we can shrink IT' so ,1v'v(3v'(xv’,n)) Jv(Xu,n)

. . -~ !
for all n. Since Xv',n S W, 75 Jv'(xv',n) S Qv;(v ,b,r) and hence

i L

! . s = 4 . ! = r =
v’ € lv'v(Jv'(Xv',n)) Jv(Xv Y. But Jv,(v Yy = v and kV,Y(v Y =V

n

3

for >v', 50 v/ = 3j (v’) and hence v’ €10 X contrary to the
Y > J\)( ) nE(ﬂ v,n’

choice of X . O ¢laim &
v, 1

>

Claim 5: I can be shrunk so that Wv is normal.

Proof: Otherwise let fv be such that {7: fv(ﬂ) < N} € Wv but

in: fv(ﬂ) = vy} ¢ W\J for all vy < v. 8ince Qv(v,bv) is normal there is

Y, < v such that [ﬂ:]v(fv)(ﬂ) = Yb} € Qv(v,bv). Shrink T so that
Y, =Y is constant and, as in Claim 3, so that iv'v(Jv'(fv')) = jv(fv).

Then vy = jv(fv)(v') = jv(fv(v’)) so if y’ = fv(v') then

fn: £.(M = v’} € Wv’ contrary to the choice of fu' 73 Claim

Claim 6: 1° can be shrunk so that W; is a countably complete K(Slrv-+l)

ultrafilter.

Proof: After Claims 4 and 5 we only need to prove ccoherence. We show first
!
that if f is a function such that {N € v: (7)) < o3 (M} € Y-J\J then there

3!
is vy < o (v) such that

(N I 3, (M = ¢(v,3, (Vb (MM € G (vib ).

(Note that the function € 1is computed in M;, using Qv(v,bv).) Otherwise
pick fU for each v so that (7) fails. Then for some Y, < b\J = Jv(ﬁv)

we have {0: jv(fv)(ﬂ) = C(V,Yb,bv)(ﬂ)} € Qv(v,bv). As in €laim 5, shrink
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T so that iv;v(yvf) =Y, and lv'v(lv'(fv')) = Jv(fv). Then .

¥
oY (v = id

1

Yoo = 3, G B D) = S EDET) = J (£ (b)) But ko

80 kv’v(ybf) =Y,r so ¥

— . 7 r
o= Jv:(fv(v ) and (7) holds at v for

= F (v'), contrary to the choice of £ ,.
'Y \v ry AV

!

!
It follows that if {7: £(T) < 03 (M1 € W, then there is vy < o3 (v)
such that [kn Ei(ﬂ,f(ﬂ))}w = F(v,Y). To complete the proof of coherence
v '
F
fans

we have to show that T can be shrunk so that for each v € T and y < o (v)

there is an f € L(&'fv-+1) such that

= 5 = 3 fa
(8) (M 3,(HM = Cv,3,(Msb YMT € G (vsb ).
33
If not then T can be shrunk so that for esach v € T° there is Y, < o {v)
such that (8) is false for all f € L(3'ru-+1). Shrink T so that
1,0, /(%)) = 5 (%) and let £ =C(v,j (v);b) in M. Then
. - N o s o= s :
1, (f,) =%, and £ (v') LEME DI 1v'+l,v(Jv'(YbI})
= 3,/%, ) = 3,(Y, ). We have f € I(er(v,bv»kajy(L(E'rv-+l)), and
the range of jv is cofinal in both v and v+ so there 1z an
ﬂv < v and a function crv:'ﬂv - (vv N L(S’rv-kl}) in K(F') such that
£ € range (Jv(cv)). Let 8 =~ be such that fv = Jv(dv)(ﬁv) and shrink
= =6 . -' s = = .
" so that ﬂv N and 6v are constant and :L\),\)(_‘;\J (Gv » Jv(dv)
Now it is true in Q  that there is § < jv(ﬂ) such that
. . Fan s . . oo . .
(3,0 )@ () =5 (y,7) since j,v7) =v' and j (g )(8) = £ .
It follows that it is true in K(F') that there is 7 < T such that
Gv(T)(V,) = Y,/ We claim that (8) holds at v’ for f = Gv(T)’ contrary
to the choice of Y,/ - It is enough to show that A ={7: jv.(f)(TD =f ,(ﬂ)}EfQ)(v,bv),
W X,

and hence it is enough to show that v’ € iv'v(A)’ that is, that

il

1,0, (3, (BN =i, (£ D). But 1, (£ (') = «(y,,) and

to G ENET) =4 (5 o (DT = 3 (e (D) =5 (o (M)
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= 3,0, =3, /y,s). Thus i f\)(jv;(f))(v') = iv,\)(f\);)(v'). 1 ¢laim 6

Claim 7: T can be shrunk so that (6) holds for B, at all v eT.

Proof: Otherwise shrink I' so that (6) fails for all v € T, and pick

for vET a Kv < v and a E’va-+1-mouse Nv witnessing the failure

of (6). Now shrink T so that N& =N and Kv = K are constant. By
uging the technique of Theorem 3.3 to compare N with JF° we can construct

an iterated ultrapower r such that

) ¥
r:N=N§N =7
v T
A%
f ) $
and Ev (vyoB,)) =3/ v+l and either o "(v) = B, or ﬂv(u,ﬁv) # W, . We

H
can shrink T so that kv;v(v’) = v>y’ and hence o J(v) > BV, s0

H =H (v,B)#W . Pick X €8N K(S'rv-Fl) so that X € H -W ,
v v v v v v VooV

—

and shrink T so that rv,V(Xv,) = Xv and lva(jv,(xv.)) = Jv(Xv). Then
7 _ ’ . _ s .

v’ € kv’v(Xv') X > s0 v € Jv(Xv) lv;v(Jv;(Xv;)). But then

jv’(Xv') € Gv'(v”bv') and hence Wg: S Uv" contrary to the choice of

X\)’ . ) O claim 7

We have now shrunk T top a stationary class such that for all v in T
(4) holds and (5) and (6) hold for B = gv. But this contradicts the choice
=

of B = o0 (v), so our assumption that the process never stops must be
hY)

false. 5.5
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§6 The Covering Lemma

The covering lemma proved by Jengen for L [De-J] and Dodd and Jensen
for K and L(U) [D-J] has the clear and elegant statement that under the
proper assumptions the model M in question has the covering property: If
X 1is any set of ordinals then there is a set y im M such that xCy
and lxl = lyLJxll. Because the structure of indiscernibles in K(F) 1is
much more complex than in L(U) we do not know whether the covering
property can be proved for K(F). This problem will be discussed further

in later papers; in this paper we restrict ourselves to the weak covering

property:

6.1 Definition: M has the weak covering property if for every sufficiently
-+
FOD

large singular strong limit cardinal %,

.

6.2 Theorem: If there is no model of EKo(K) = K++ then there is a strong
sequence & having the weak covering property. If § 1is any strong

sequence with A4(G) € ON then JF may be taken with I?fE(Q) =G.

Temma 6.2 is proved by (sing the following stronger versiom of the

covering lemma:

+ +
6.3 Lemma: Suppose that there is no model of 3K o(X) =K . Then for all
ordinals u and sets A C p there is a sequence & with Sl\u = 0 which
is strong in K(F,A) and such that for all K > p, if ¥ 1is regular in

N

R(F,A) and (p U cfK)) ° < IK! then there is a K(§ ﬂc,A)—ultrafilter

T on «.

R
The assumption that (U cf(K)}) ° < |K| can be weakened, with a little

“more care, to (p i cf(K) U Rl) < ‘K\. However Lemma 6.3 will be adequate

for our purposes.
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Proof of 6.2 from 6.3: Let AT n be a set coding up the sequence G and

let & be as given by 6.2. Then since & 1is strong in RK(F,A) = RIFIUG),
REFEUG) N P(m) ©KG) so G, and hence FU G, is strong. FU G will be

the desired sequence. Suppose that v 1is a singular strong limit cardinal

o JHER@EA)) o+

greater than p and X Then cf(K) < v so

R®
(cf()Un) ®© <v. By Lemma 6.1 there is a K(FJK,A) ultrafilter on K,

but this is impossible because K is a successor cardinal in

R(F[K,a). 0 6.2

Proof of 6.3: The sequence & is defined recursively, Set :}fu = 0.
If E?f(&,ﬂ) has been defined and there is a countably complete
K(EF(Q,B),A) ultrafilter then pick any such ultrafilter for &(«,p).

Otherwise set eg(a) = B. By (the relativization of) Lemma 4.1, F is strong in

R(F,A).

In the following we will for clarity simply ignore the set A. The
presence of A has no affect on the proof except that obvious relativizations

of earlier results are used.

N
Let K be regular in K(¥) and suppose (pU cf(K}) ° < §K|. Choose

a cofinal subset z of K such that |z| = cf(K) and let X be an
alementary substructure of Vk+1, the sets of rank less than % +1, sueh
that

&o
(1) |x] = (mU cfx)) 7,
(2) , zU {1,3{x} U pc g,

(3) X C X.
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Let w:Q= X for a transitive set Q, and set K = n-l(K) and

1

F=n (F). The Proof of 6.3 breaks into two cases, depending on whether

or not K(F) N P(p) © q for all p <F.

case 1 (R(F) N P(p) © O for all o < €). We will show that in this case

++ =
there is a model of 3K o(K} =K . Under the hypothesis of the case ¥

is strong, since it is strong in Q. Hence by Theorem 5.1 K(F r%) <= K(-—E-)
for all 5 < ¥, so K(grc‘ﬁ) N pd)y<c q for all & < K. Now fix & equal
to the least ordinal in K -X. Then & 1is the first ordinal moved by m,
50 g}\é = 3F5. Also, iél = |x] <k so 5+< K in RK(&) since K 1is a

“1limit cardinal.

By definition 5.3(ii) the map :Q—»X generates an extension
TR K(F ) (K(F ))*. If (K(3))* 1is well founded then we identify it

with a transitiom class.

6.4 Lemma: Suppose & 1is strong, m:Q - B is an elementary embedding where

B is a sufficiently large substructure of K(F), K(F) Nl P(§) € Q where 5§
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is the first ordinal moved by 1, and (K(g))* is well founded where
® * F ++
m i RE) = (R(F)) is defined as above. If o () <39 in L(Srﬁ +1)

then U = {xC&8:5 € m(x)} 1is a K(E[é +1) ultrafilter on §.

Proof: '"Sufficiently Large" will be explained by the proof. In particular
the © given in Case 1 works. By modification of Theorem 5.2,

(K(ENF = K(E*) for a strong sequence &F*. We first show that

3*}\5 +1 = Z[6+1. Since § 1is the first ordinal moved and P(5){1R(F)<q,
§ dis a limit cardinal in K(F) and hence m(§) 1is a limit cardinal in

++ (K(F))

R(F). Thus m{(a) > & > 03(5). Any ordinal T less than m(§)

aka
~

can be represented by the pair (id,T}). The ordinal 03 (A7) can be

represented by the pair (M < 6(03(5)),6) so T = oE (6) iff

x
&M € m(I(C,0): 0(C) = C}); f.ev, iEf T = o0(5). Hence o (5) = o (8).

If N< 03(5) then &*(5,T) 1is represented by the pair
((.(C15£)F(C150,))+(8,M) and any subset x of & is represented by
the pair (AL xN(,5). Hence x € F%(5,1) 1iff (5,(3,M)) € m({(€4(8,:6,)):
xNC € HC ,LHY) LEE x € 3(5,M). Hence F*(G,M) = F#(5,M) and since T

was arbitrary 3*r5 +1=3[5+1.

Now we have an elementary embedding n™: RK(Z) -~ K(F*) with
3*f5 +1 = 3"1\6 +1, and U = {xC8:8 € n*(x)}. It is easy to see that

U is normal. We will complete the procf by showing that if 03(6) ¥ 6++
in L(F!5+1) then U is also coherent. Let ¥ =3[6+1 = S*fﬁ +1

and consider the commutative triamgle

L{H) ———-1---—> L(:H»)5 /U = L(i(H))
- k

L™ (#)))
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where k([f]) = n¥(£)(s) for any member [f] of the ultrapower.

The c¢laim that U 1is coherent in K(Eré +1) translates straight-
forwardly to the claim that the first ordinal moved by k 1is greater than
e ; , ++

ol(ﬂ)(é), so that ol(ﬂ)(é) = 03(5). By assumption we have 03(5) < 8
i ++
in L@ 5+ = wmrah s + 1), so or ™5y <5 in Leioh) 8 +1).
Hence it will be enough to show that the first ordinal moved by k 1is at
++ . . . . ; ,
least & in L(l(H)ra +1), Now kr6-+1 ig the identity, and if
m < 6+ in L(#) then there is a subset of & of order type T in L(¥)

Ty 55 the identity. If M =57 in

s HLTFOH T5+1))

and hence in L{i(H)), so kf(ﬁ
i) [5+1) then k(M) =17 as well: Otherwise N<k(q) =

CgHLOD) | n L )

and T = k(N), contrary to assumption. But
the first ordinal moved by k 1is a cardinal in L{(i(¥)) and hence in

L(i)[5 +1), so it must be at least 871 in nia)/s+1). 6.4

Proof of 6,3, continued: We will show that if m:Q - V . is as defined
: L

before and m : K(F) - (R(F))¥ then (K(F))* is well founded. It then
follows by Lemma 6.4 that the ultrafilter U is a K(F[8 +1) ultrafilter.

But U is also countably complete: Otherwise let (Xn:n.E w) be a

: R
sequence of sets in U such that 0 X =0, Since %% c X,
ncw n

(Xn:rlE w) € @ and hence N 0 ﬂ(Xn) = (N But this is

e W Xn> = 0.

impossible since § € N e mX_). Now if B = 03(5) then U is a
nEw n
countably complete K(Ef(é,B))-ultrapower, contradicting the definition

of 03(5).

If (R(F))* is not well founded then let ((£,1):n€ w) bea
sequence witnessing this, so if we set X, = fn,m": fn+l(ﬂ) € fn(ﬂ)}

-
then (0 ) € ﬂ(xn) for all n. The sequence x = (xn:n € w) is

n+l’ﬂn
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in Q, and V., = Eﬁ‘(VH(’ﬂnﬂmn) € n(x )), so Q = Eg('\fn(%n_,_l,én) € %)

But then (fn(gn): n € w) is a decreasing sequence of ordinals, which is

impossible. ] Case 1

Case 2 ((K(F) N P(p))YZ @ for some g < K). In this case we will

either show that ¥ is singular in K(F) or else construct indiscernibles

for EK(¥) which can be used to define a X{(F)-ultrafilter on K. The first
alternative is excluded by the hypothesis of the Lemma 6.3 we are trying to

prove, so the KG}T¢<)—ultrafilter required by the conclusion must exist. It should
be remarked that this is the most interesting of the two possibilities,

although this fact will not be apparent in the truncated version given here,.

In Case 1 larger cardinals exist than can be dealt with in K(F), so the

only information given by the argument is that the machinery is overwhelmed

by reality. 1In Case 2, on the other hand, all large cardinalg are in K{(&)

and the proof gives quite a bit of information about how the universe of

sets is built up from a base in K(F).

If the hypothesis of Case 2 holds, then let M be the least K(F)-mouse

such that P(p) " ME Q@ for some p < K. Then M = fﬂ for some Z_E

a1

and some sequence H with Ztiri+1 = 3. We will ceirry out, as far as possible,
a fine structure analysis of Ji as in Section 4. Since H is an ultrafilter
sequence above E, there is no problem for all wn such that the projection
Py is not smaller than K. On the other hand there must be an n such that

041 < K since by the minimality of M there is a subset of some o < K

H ] *
s - : : A =
in {y+1 Jﬁ. Hence there is a canonical En code Jn. (Mﬁ,Anﬁifgn-Fl)
H —
of J such that 5 =UA > K 2and ¥ has a new Y subset of some
s n n— n 1

o < €. Now if aﬁ(pn) > 0 then, since 0, > K > UWF), H is a Zl ultrafiiter

sequence and Eﬁ- commutative in ﬂn. Hence by Lemma &.41 ﬂn is reducible



to p via some parameter p, whether or not oﬁ(pn) > 0. Let C be the
system of indiscernibles required for the reduction, so that ﬂln=2i(p Upsl).

wke
£y

Let T3> € be the least ordinal above K Zl definable in i’ln from pUp.

Claim: U{C{r,0): 1A < dH(T)] is cofinal in K.

3
Procf: By the minimality of Jcr+1’ every set in E'ln is in Q and the map

™Q =V . defines a E;’ elementary map ﬂ*:‘-’?ln — 5’-1: such that ﬁ*rE = nrdK_.
K *
% %

Since is Zl elementary 9/7: can be decoded to a structure J . such

o
that .}i“r'rc = SrK and H* has a rank complete system of indiscernibles

above K.
W
But then H™ is a ultrafilter sequence (above K) in & = iﬁh . The
o +1
ZT theory of ﬂ; is a member of €, so & can be collapsed to give a

EFK-mouse containing the theory of i}l: It follows that this theory, and

hence ﬂln itself, is in K(F[ %) and hence, by Theorem 5.1, iz in K(J).

Now suppose that U{C(TJ\)V NK:x < oﬂ('r)} is bounded in K and let
5 be the sup of U{C(T,A) N K:x < oﬁ(f)} U p. Then the Z‘.’l“' hull of
53U p in %{n is equal to i’ln. Since TT”(E) is cofinal in K it follows

that the 2;‘ hull of m"3 U m(p) in ¥* 4is cofinal in K. Then the T

=

hull of m(&) U m(p) 1is certainly cofinal in ¥, but this set is in KX
and witnesses that K is singular, contradicting the assumption that K

is regular in K(JF). ] Claim

Now let C =U{C(r ) NEK:AC oﬁ(‘r)] and for c € ¢ define
Yc = {xCK:m(c) € x} if ¢ € C(t,0) and Y, = fxCx: xNm(e) € F(m{¢),0)?
if ¢ € C(7,h) for some X > 0. Set U= {xTK:T5<K Ycb (C=8) x€ YC}. We

claim that U is the K(SrK)-ultrafilter on K reguired by Lemma 6. 3.
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Suppose f € K(F) and {v: f(v) < v} € U but for all y< K
{ve f(v) = v} § U. For all sufficiently large ¢ € C there is an ordinal
vy < m(c) such that fv: £f(v) = y} & Yc' Let's call this ordinal f*(c);
then there is an increasing sequence (cn: n€ w) in C such that if

n# n’ then f*(cn) # f*(cr';). Now since UOQ < Q, the sequence (cn: n € w)
= = -1
is in Q and hence so is the sequence (Yc :n € w) where Yc = (YC Y.
n a n

Since T is Zl elementary it is true in @ that there is a function

g € K{ ) such that {v < cn:g(v) < v} € §c for each n € W but

if Yy is the ordinal such that {v < cn:g(\j; =}€"-f-c then Yo # Yy whenever
n#¥n. Since g € K(F) NQ, g is in an Sr K-mousne in Q and hence

*
g €J, . Then g 1is in the Zl hull of (p U p;iC) in QIn 30

o

- *
T(q,c)  for some gq € p U p, some sequence c¢ and some 2 function T. We

H

g
can assume, by deleting an initial segment of (cn:n € W) 4if necessary,

E Y
that for each ¢ € ¢ we have either ¢ < co or for each nf€w c > cn.

Now if there are integers n < n' such that c »Co € {7,0) then

c U {cn} is equivalent to c U {cn,}. Since g(cn) < e, and g(v) = T(q,g)(v)

we have Y, = glec ) = 8(01{)

n Yn’ contrary to assumption. Similarly if there

are integers n< n” and a A such that cn,cn,.é ¢(t,\) then if h(v) =

the ordinal vy such that {v < v :1g{v) v} €H(v,0) then h(v) is

definable from p Up U 'c':a U {v} so =+

0 h(cn) = h(c:n =T contrary

to assumption. Finally, if there are itnegers n=< n’ such that

c, £ ¢(t,\) and cn; €C(t,\") for ordinals * <« A* then c £ c(cn , M)

where X = C{T,h,\") (cn,) . Then {v < cn:g(v) = Yn} € X (cn,O) implies

that {n ¢ cn,:{v < nigly) = *{n} € #(n,0)} €H(vy,\). By coherence it follows
: = 4 { =

that {v € cn,.g(v) Tn} € ﬂ‘cn,O) so again y_ =7 _,, contrary to

assumption. But there must be some pair of integers n < n” such that

cn € C(T,.A), c, EC(Tt,»") and A = )L, so the ordinals }\n cannot all be

distinct. O
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§7 Applications of the Weak Covering Property

In this section we will use the existence of sequences with the weak
covering property to prove for K(&) some of the results which Kunen proved
for IL(U) in [K 70] and which were extended to L(JF), under a more restrictive
hypothesis, in [M 74]. We will also show that these results are not always

true for L(F).

All of the results of this section are proved without the axiom of choice
beyond dependent choice. The only use which has been made so far of the full
axiom of choice is in the inductive definition of the sequence -3, in which
we were required to choose an ultrafilter to be F(@,B) whenever possible.

In Lemma 7.4 we will show that there is only one possible choice of F(o,B)

and hence the axiom of choice 1is not required.

In Theorem 7.11 we will prove those results promised in the introduction

that various hypotheses imply the existence of models satisfying o(X) = K++i

In [K 70] frequent use is made of the fact that if T is a proper class
then any subset in L(U) of an ordinal o is definable in L(U) from parameters
in o U T. This is true of L(U) because the transitive -collapse of the skolem
hull of o U T in L(U) contains all of the ordinals and hence must be
L(U’) for some U'. 1In order to work in K(F) it is not enough to know
that the transitive collapse of H(aLfF) contains all the ordimals; it is
also necessary to know that it contains all mice. The weak covering property

will be used for this purpose,

7.1 Definition: A class T 1is t-thick for a regular cardinal r if

. +
contains a v-closed and unbounded subclass ¢ such that iu n T! =



7-2

for all v € C. A sequence F 1is +r-full for a regular Tt if there is
t-closed, unbounded class € of ordinals such that if v € ¢ then

+
v in K(F) is the same as in V.

A class is said to be thick, or a sequence to be full, if it is

t-thick or r-full for all sufficiently large regular .

Note that Theorem 6.2 asserts that any strong sequence has an extension

which is full.

If i is an iterated ultrapower of K(&) then we call i proper if
the order type of i(X(F)) 1s at most ON or, equivalently, if no single

ultrafilter is used ON many times in the ultrapower.

7.2 Propositicon: Suppose F is 7v-full and T is r-thick.

(1) Any intersection of t-thick classes is t-thick.

{(ii) If 1 1is a proper iterated ultrapower of XK(F) then i(3F) 1is full,

and if og(v) 0 whenever cf(v) = 1 then {v:i(v) = vl is 1 thick.

(iii) If F and ¢ are each 7-full then there is a T~ full sequence

% and iterated ultrapowers i and j:

i X(H) -

(iv) TIf M 4is isomorphic to the skolem hull H(TUvy) of T U vy in K&

i: R(G@)

then M = K(H) for a v-full sequence ¥H.
(v) Tor all ordinals and sets xC & in K(F), x is definable from

parameters in I U o,

Progf: Clause (1)} is clear and clause (1i) is clear unless the iteratiom

has length ON. If i has length ON then suppose i is the limit of
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(i,:v € ON) and let X be the class of ordinals v such that (iv(v) = v
LK)
and cf(v) = 1 and v =y ). Then X contains a t-closed unbounded
+ +
class and for any v € C we have v in K(i(F)) equal to v in K(&),
which is v+. If og(v) = 0 whenever <c¢f(v) = 7 then no member of X is

measurable in K(F), so i(v) = iv(v) =y for v in X. Thus {v:i(u)=v}

containsg X, which is Tt-thick.

To prove clause (iii), define the ultrapowers i and j to compare ¥
and G as in Theorem 3.3. By the proof of Theorem 3.3 at least one of the
classes {iv(a):v € oNl1 and {jv(a):v € ON} 1is bounded for each ordinal a.
Hence at least one of i and j is proper; suppose 1 is proper. If 3}
is also proper we are done, so suppose j 1is not proper, so J(G) rON = 1(F).

There is an ordinal v_ such that ¢ = {v:j {a Y=a =y>v ]} isa
o vov vo A4 o

closed and unbounded class. For all v € C, vt of FJ(K()) has real
+
cardinality v and so is less than the real v . This is impossible, since

R(i(F)) = R(IGToN) © J(R(G)) and K(i(F)) is r-full by ii.

To prove clause (vi), let 11:M== H(TLia)«{ K(F). Then M F vV =R(G),
where G = ﬂdl(ﬁ). There is a t-closed class C of ordinals v such that
+ ‘ .
cf(v) = 7, !vf7T| =y, v+ = v+(K(3)), and lv FTT‘ = v+. Then for v € C

+(M) - \J+

we have v so M must contain all of the § mice on v. Hence

M is all of R(G) and G 1is 7-full.

If ', & and o are as in clause (v) then by (iv) we can take
m:R(G) EfH(TLJd}‘{K(E), with G 7t-full. Then by (iii) there are proper
iterated ultrapowers 1:R(¥) - K(H) and 3:K(G) - K(d). Then any subset
x of @ in R(F) d4is in K(H) and hence in K(G), so x 1is definable

from parameters in T U w. O
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Using 7.2(ii) we can easily extend 6.2 to get:

7.3 Lemma: If (G 1is a strong sequence and 4(G) € ON then there is a

strong, full JF such that E'FE(Q) =G, every JF(o,B) 1is countably

complete, and og(a) o for all « with cf(a) > 4(G) U Rl. ]

7.4 Lemma: Suppose F 1is a strong sequence, &(F) < K+1, and Uy and Uy

O=Ul.

are K{(F)-ultrafilters on K. Then U
Progf: If U, # U, then the lemma also fails in L(R(F),Uy50;), where the
axiom of choice holds. Thus we can assume the axiom of choice. By Lemmas 6.4

and 7.3 there is a full sequence § such that QFK-+1 =% and oq(v) =0

whenever cf(v) > K., By Lemma 7.2 there are iterated ultrapowers

iVUIt(K(Q) :UO)\jO’

K(G) : K@)

kult(k:(m ,Ul>/va

It is easy to see, uging the faet that og(v) =0 for all v with
cf(v) > K, that T = {v: Jote() = 3,1, = v} is thick. Also,
jo(K) = jl(K) = 4% since iO(Q)rK-+1 = jO(Q)fK-+l = §. By Proposition 7.2(v)},
any subset x of X in K(G) is definable from parameters in K U I°. It

follows that joio(x) = jlil(x). But x € U, iff K € io(x), which holds

¢
iff K € jolo(x), and similarly for Uy . Thus UO = 0. ™
31 32
7.5 Corollary: 1If 31 and 52 are strong, and o (¥) = o “(@) for all «
then 31 = 32. ]

This is not true if we look at L(¥) instead of K(F). The following

example answers a question left open in [M 74].
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+
7.6 Theorem: Suppose ¥ is measurable and there are at least K

measurable cardinals. Then there are distinct sequences 31 and 32

& F
of countably complete filters such that o 1(a‘) =0 2(&) <1 for all «

and Ei is an ultrafilter sequence in L(Ei) for 1 =1,2.

Proof: Since we are dealing with only one measure per cardinal, we will
simplify our notation somewhat: Let (av:v = aZ) be an increasing sequencs
of cardinals and let S(av) be an ultrafiiter on a for w Kia:. We can
assume that V = L{F).

claim: For all x & a, there is T < a: such that x € La Gﬁran)-

T

Proof: 8ince V = L(F), every subset x of a is in anliraoﬁ-l-mouse
N. Note that we can assume N 1is a "pet mouse" (see [M 79b]), that is, a
model of ZF, Thus the Proof of Theorem 7.5 does not need the use of any

of the machinery developed in this paper.

Now we compare the length of N with L(&), as in Theorem 3.3. Since
we are working in L(F), where each 3(av) is a normal measure, this
. . - . . + .
comparison will not affeet F; that is, there is v §_ao, an ordinal §,

and an iterated ultrapower: such that 1I:N -~ Lg(g ~av) and 1i rao-kl = id.

Let N = f% . We can assume N satisfies that there are exactly az
(N) (%) (M) (L(W))
measures. But ‘a+ \ < |N| =a , so a+ < a+. But a+ = a+ s
o - o o o 0 o
(M) (N)
. + +
so i(G) = Era has only a < a measures. Thus v = a+ < a+.
v o} 0 o )
+
Now E<a, soif TT=wv+1 them x€ L G?fa YT L (Era ), as
v g W an il
required. ] claim

Now let T be the class of standard models M of cardinality a

such that for some sequence EM of countably complete filters, M satisfies
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(kg + V = L(Z‘FM) +{the first '&’M-measurable cardinal is ao)-i-(z(ﬁM) iz a
successor ordinal)). For ME&E T let Fy = lsﬁM(ao) N T_.(EM aM), where 2y
is the largest EM-measurable cardinal. By the claim, E(ao)CU{FM: MET'].
Now P(a ) © K@), so T € K(®). (Recall R(g) = ﬂozé o ult (K(F,F(2_)).)
Since a is not measurable in K(@), E(ao) cannot be U{FM: ME T},

Thus FMfI S(ao) for some M€ T', and there is a set x € L(EM]‘aM) such

that E(ao) and EM(aO) disagree on =. Now we can take an iterated

ultrapower
i:N -~ Lg(i(EM))

+
such that for some v < a

0’ i(EMraM) is a sequence of measures in

Lg(i(EM)) on the cardinals (aY: vy < v)., Since Lg(i(IFM)) has the extra

measure i(SM(aM)), i(&MraM) is a sequence of measures in- L(i("a*"MraM)).
But x € L(i(ng‘aM}) so i(F)(a) =F(a) #3F(a ). Then F = Efav

1
and 32 = i(EMPaM) are the required sequences. 7.6

On page 63 of [M 74] it was claimed that the conclusion of 3.4 of [M 74]

always holds "except in finitely many places'" in a sense which would imply
& F
2

are sequences such that o l(a') = o0 “(w)

in particular that if 31 and 32

for all o and there is G such that L(G) is an iterated ultrapower of
both L(I}l) and L(Ez) then 31 = 32. This claim is probably false; in any

case we do not have a proof.

7.7 Definition: ¥ is maximal at a if there is no strong sequence &'

7

with EIra = 3lo and o3 () > 03(0’).
Notice that if ' witnesses that JF is not maximal then
e r(d,og(d)) = Eroz-i-l and so U = 3'(0!,03(00) is a K(‘th\a’+l) ultrafilter

on &, The next lemma i1s of interest in itself but is given mainly for use

in proving Theorem 7.9.
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7.8 Lemma: Suppose that ¥ is strong and i:K(F) - K(3') 1is an iterated
b
ultrapower with support £. Then for each o either

(i) i(¥) 1is maximal at o, or

(ii) a = i@’y and F is not maximal at a’, or
b
(iii) for some v < L(f) =h, ¢ = [ha av] o - Hence i factors into
r F(E)

- : 2 3 . ! = a
i o = o’ =
i, 1, lv,v I_lv where i, 1,}\( Y, o (@) i 1,1(B }, and 1\),\j ; 1s

the ultrapower of K(i (F)) by iv(ﬁ)(d',ﬂ').

Proof: Suppose (i) fails and let U be a K(S'ﬁa—+1)-ultrafilter. Since
-1 ’

the existence of U only depends on Eri (¢+1) we can assume that &

is full and that {cf(y}:og(y) > 0} is bounded. By Lemma 7.2 there are

maps

R(LENY /0
i

R(F) > K(1(F)) S R@G)

such that if T = {T: 1(M) = (M) = (M) =k(M) =7} then T 1is thick.

Case 1 (@ & range (i)). In this case we show that clause (iii) holds. If

it does not then for some £ &€ K(F) and y< &, ¢ = i(f)(y). But £ is
definable in K(F) from members of T U &, where & = {T: i(M) < @}, so o
is definable in RK(i(F)) from members of T U &. But rr(TLJa) = kjF(TLJQ)

so r(®) = kj(@), contradicting the fact that & = r(¥) and & < kj(¥).

Note that if clause (iii) holds then (iv(ﬁ)(&',ﬁ')) satisfies

RVES Y

the given conditions on U. Hence by Lemma 7.4 it must actually be equal

to U.
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Cagse 2 (o = i(x’)). Let U’ = [x Cw:i(x) € U}. We will show that U’

is a K(F[ (@’ +1))-ultrafilter, so clause ii holds.

Suppose f:o' = a’ and {M: £(M) <M} € U’. Then f = £'fa’ for some
£’ definable from members of T U @', Then r(i(f’)) = kj(i(f’)) and
kKi(L(E)) (@) = i(£)(@), so {M:i(E)(M) = L(£)(@)} € U, Hence
n: £() = £(@)1 € U, and se U’ is normal.

)

£ {MN: £(N) < o (M)} € U’ then a similar argument shows that [£1,/ = 8
for some 8’ < og(a') and [¥n S(H,f(ﬂ))]uf = F(x’,B’), so half of the
coherence condition holds. For the other half, suppose B’ < og(a’). We

!

have to show that there is £’ & L(E{h’-+l) such that B = [f'}U,.

Now since U is coherent and § = i(g’) < ol(g)(d), there is

fe L(i(&){a-Fl) such that 8 = {f]U, and £ 1is definable in RK(i(F))
from parameters in ' U @. Let ¢ be a formula and let T € [O!]<UJ and
T € [T]<uj be parameters such that for all v <@, £f(v) =1 Liff
©(2,%,v,N). Then it is true in K(i(¥)) that there exists % € [a]<u}
such that if the function f is defined by £(v) =T iff ©(2,%,v,N)
then flo € L(i(?)fa-%l) and £(¥) = B. Since i(y) = vy, it follows
that in X(F) there is % € [@'1° Y such that if £’ is defined by
£v) =M iff @R ,v,M) then £'la’ € 1@la’+1) and £'@’) = p’.

But then [f’fa'}U; = B', so U’ is coherent.

I
Finally, K(E)a /U’ is well founded because it can be embedded in

!

R(1(ENY /U

,» which is well founded. Since & is full it follows from

7.2(i1i) that U 1is absclutely well founded. r

In Section 4 we proved Theorem 3.1! under the added hypothesis that

F(@,B) 1is countably complete for each pair («,8). In the next two results
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we eliminate this added hypothesis. A sequence JF is said to be maximal
if it is maximal at all ordinals <, that is, for no & is there a

K(F (@+1)-ultrafilter.

7.9 Theorem: There is a maximal sequence EM; this sequence is strong and

is unique.

Proof: The existence of SM is an easy recursion on pairs {(¥,p): TIf
3M}‘(a,5) is defined then ¥ (@,p) is anmy K(SMf(oz,g)) ultrafilter, if any
exists, and otherwise os(a) is set equal to PB. By Lemma 7.4 the sequence
is unique provided it is strong. Lemma 7.4 also implies that the axiom of
choice is not needed for this construction (again, provided the sequence is
strong). In order to show that EM is strong we will construct a sequence

G which is strong by Lemma 4.1 and then show that there is an elementary

embedding of K(&M) into K(G) taking EM into .

Claim: There is a full sequence  such that for all o, if og(a) >0
then cf(a} = W, and there is an wl-closed, unbounded c¢lass € of cardinals
@ such that § 1is maximal at o.

Proof: Start with a sequence Ql which is maximal for countably complete

ultrafilters; that is, such that there is no countably complete K(Qlﬁa-kl)-

ultrafilter for any ordinal @. Then for any o > w

HEGD) - 4t

1 with cofinality equal

to ml we have o

than w. It follows that any K(Qlfa-+1) ultrafilter is countably complete,

+
» 80 both &« and o  have cofinality greater

and hence Ql is maximal at such «. Now take an iterated ultrapower

i:K(Ql) - X(G) as in Lemma 7.3 so that cf(a) = wg for all & such that

oq(&) > 0. Let C be the class of cardinals @ such that o > cfla) = w

1° 1’
closed and unbounded; we will

and i(A} <« for all % <. Then ¢ 1is Wy
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show that G 1is maximal at all «o £ C. If i(e) =& then § is maximal
at ¢ by Lemma 7.8, since C}l is maximal at «. If i(e¢) #o then @ is
not in the range of 1, so by Lemma 7.8 ¢ 1is maximal at « unless i
includes an ultrapower by am ultrafilter on «. But 1 doesn't include such
an ultrapower, since cf(@¥) =w and i was comnstructed by taking ultra-

1

powers on ordinals with cofinality different from W, - T Claim

We will prove that K(EM) is an elementary substructure of K(G) by
defining a class Z of ordimals such that K(E«M) is isomorphic to the skolem
hull of Z in K(G). Let Zy be the first « wmembers of
Z. The set 2, will be defined by induction om ¢ together with a class
Aoz of ordinals such that Z - z, < &oz' These will satisfy the following
5 conditions:

(1) H(z, U 8,0 N oy = z, U 4, where H(z, J A,) 1is the skolem hull
of z, U Ao!'

(2) &a is thick

(3) the order type of Z, is o

(4 If «' <« then 2., = Zo;ﬂ a, ,where a, = ﬂf_\a,. and z, - z, < &o:’ .

(5) 1f Ty K(C}a) = Bi(za U Aa) < K(G) is the transitive collapse then

C}a o = &’M @. ({Note that ﬁO!(a) = a, by (1) and (3).)

These conditions emsure that K(F ) =H(Z)K(G), so &  1is strong.

M

We set z, = 0 and ."_\.O = ON. If =z and A have been defined,
p o’ af =

0 M(of’) =0, and @ 1is the least ordinal greater than @’ such that o M(a)>0

then we can define Zy and Ao.’ by letting z,, be the first <o members of

Z U A and setting &0! equal to A T 2y Conditions (1) - (&) are
al o’ F

al
immediate, and Qarﬂf'=f} ’ra"=3MPa'. If ¢’ <o’ <o then oM(oz”) = 0,
o
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and o a(a”) = 0 as well by the maximality of 3M° Hence SM:ra = qaf o'

and condition (5) is satisfied. If « 1is a limit of measurable cardinals then

we can set Zy = U 2 and Aa =N A . Now we are left with the only
alca af ol<o o

dlfflcglt case, defining 2,41 and Aa+1 when Z, and Aa have been defined

and o M(a) > 0. To deal with this case we will define an auxiliary decreasing
sequence of classes Tv‘ For each v conditions (1) - (5) will hold with Aa
replaced by Fv. In addition, if bv is the least member of Fv then

(6) if v’ <~ then b <bV.
r
A%

If v =0 then we set TO equal to Aq, and 1f v 1is a limit ordinal then

Tv = () T . We are left with the problem of defining T

given T .,
14 7 A"
ALV IRY}

v+l?

For each v let
py i K@) =h(z, UT)) < K(G)

be the transitive collapse. Then QJ ra = qa fa = Ew:ra. Also, by Lemma 7.4
; b ’

' Y M qh 3M
Qv(a,K) = 3M{a,k) for any A < o (&) 1 o "(@). We must have o (&) = o (&)
G, o 3
80 Q\: fOH-l = EM[\(Q,Q \‘)(oz)). If o \”(a) =0 M(CY) then we can set
Zoal = Zy U {bv} and Aa+1 = Tv _{bv}' We will sventually show that there
G’ 3y
always exists an ordinal v such that o v(a) = o (&), but first we will
G By
assume that o "(w) = Bu < 0 (&) and we will construct TV+1.

The filter U = F (o,B ) is a K(QJ)-ultrafilter on o, and
ult(K(QJ),U) is well founded since U 1is absolutely well founded (Definition
3.10). By Lemma 7.2 we can construet proper iterated ultrapowers j and k

so that the diagram
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ule(R(G)D),®)

K(@G)) ' 280

commutes. Since Tv was thick and J;(Y) =0 if cf(y) ¥ Wy

== 4 1 = 3 d 3 ™ = - 5 7
Y= {M: ki¢M) = j(M)} is thick. Now set T4 =0,¥-b . T ., is thick

since both Tv and Y are and clearly ﬂ(f§+1 U za) = rv+l U Z, - Clauses
(4) and (5) hold for Tv+1 because they hold for T;. Clause (6) is obvious:
o g Y since j(@) = < i(@), so bv = gv(a) d Tv+1 and bv < bv+l' Hence

satisfies conditions (1) ~ (6), and this completes the definition of

Tv+l

the sequence of classes Tv'

Since €, the class of cardinals of cofinality w, where § is maximal,

1
isg wl-closed and unbounded there must be an ordinal v € ¢ such that

b <v for all v’ < v. We will show that the comstruction of the T

\)I

sequence must stop with Tv.

Claim: Let v be as above and let T be any thick class. Then v € H(v U T).

Proof: Let Q = K(G’) be the tramsitive collapse of M¥(v U T), so

p: Q=H(v UT)=< K(Q). Suppose that, contrary to the claim, v & H(v U T7).
Then v 1is the first ordinal moved by p. Since T 1is thick, P(v) N RG) < Q
50 we can define p*:K(Q) - (K(Q))*. If (K(G))* 1is well founded then

G

+
Lemma 6.4 implies that either o7(v) = v + in K(Q-fvﬁﬂj or else G is
, +
not maximal at v. But by assumption there is no model of IK oK) =K +
and G is maximal at v so (K(G))® must not be well founded. We will

complete the proof of the claim by showing that (K(G))* really is well

founded.
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Suppose (I{(Q))* is not well founded. Then there is a sequence
(fn: n € w) of functions fn: v - 0N in K§) and a sequence (E_n:n € w)
) . - N '
of ordinals %n < p{v) such that if X {g,g": fn+l(§ ) E fn(g)] then
!
; . b
(gn’gn-f-l) € p(xn) for all n € w, Now since G ° 4is full there are, by
Lemma 7.2, iterated ultrapowers i and j mapping K(G') and K(G) into

K(#) for some sequence ¥&:

KRG .
\) K(H)
R(G) —

3

Let g € K(G') be such that [gn] = j(fn), where the brackets represent the

equivalence class in the ultrapower i. Then for each n we have

]

p(x) = p({(5,EDEV%: (B g, BNENES GBNDI € G'D)

80

il

7 . 2 . .-!-. — ; — -
p(x ) = {(§,8N€3(v): [3: 0 PENENE0(g ) (a)(D)] € G,
(Note that to simplify the notation the support of the ultrapower has been
omitted.) But this says that if i’:RK(G) - M is the ultrapower of ¥K((})
whose support is the image of the support of 1 then ([o(gn)](i'(in)): n&w)
is a decreasing sequence of ordimnals in M. But M, an iterated ultrapower

of K{(G), is well founded. O claim

To complete the proof of Theorem 7.9 we will need one more claim.
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Ciaim: If v, < v, then (Ji(bv U Tv y fi b, ) &b

b2 1 Y2 2 M1
- <
Proof: If this fails then there is w € [T\) ] and a term T such that
2
- <w -
R(G) |= 5%,y(%€ b, 1 and b <y<b and y=7(%,#)). Then
1 1 2
- - < = -3 -

KRG ) = ERyRE @)Y and @<y <o f(b. ) and y= n(F.0 1G)).

vl hY \}2 \Jl

Fix such an ¥ and y. Then p (X)c z_ and K(G) }‘=p (y) = 7(p (¥),w)
Y1 * V1 1

so o, () EH(z, UT )=z UT . But z <b <o (y)<b =0T ,
1 2 2 1 1 2 2

so this is impossible. 0 claim

Now by the first claim with T = I‘v we must have v € H(v U Tv)’ so
vedb U T,) for some v’ < v. By the second claim it follows that
7

v
v > b\) and since v =U b we must have v = bv' Now 1f the

L !
Vo< o
construction does not stop at v then I is defined and b >b = .
v+l v+l Y
By the second claim b\) g H(v U rv+l)’ but this contradicts the first

claim. m 7.9.

We could easily modify this argument to prove that SM is full, but

that is obvious from the next theorem:

7.10Theorem: If & 1is any strong full sequence then there is an iterated
ultrapower i: K(EM) = K(F). If &F 1is strong but net full then there is

an improper iterated ultrapower i: K(&'M) = M such that JF = 1(3\{) rON.
I

Note that if F 1is a set then the second alternmative can be restated:

there is an iterated ultrapower 1i: K(SM) - K(i(SM)) such that & = i(EM)/‘E(E).

Proof of 7.10: The ultrapower i is defined recursively: Suppose

i tR(X,) 2 K{# ) has been defined. I1f F =F then i =1 . Otherwise
v M v Vo Y
by Lemma 7.4 there must be a, such that o v(a\)) # og(av) and if
& - r
b = inf(o "(a ),0"(a )) then ¥ j(a ,b ) = 3f(a b ). Now if
\ e ¥ v AVRSY ARV
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F

o) v(av) < og(a) then Sv iz not maximal at 3 . Since EM is maximal,

case (iii) of Lemma 7.8 must hold, but this is impossible: it implies that

"« v but by the construction

&

v
i : a = g < a . Hence b = o a > 0
\}'+l,\;( \)’) v’ ) v ( \))

a =1 a ) for some v
Y v’+1,v( v "

F . ;
(av) and 1v,v+1 is

defined to be the ultrapower by Ev(av,bv). It is easy to see that i is
an iterated ultrapower such that i:K(?M) = K(F) 1if 1 1is proper and
1(8&9 rON =& 1f 1 is improper. If ¥ 1is full then i canmnot be
improper, so the first sentence of the theorem is true. Since there does
exist a full sequence it follows that EM is full. Hence if I is not

full i cannot be proper, as the second sentence of the theorem states. C]

Remark: Theorems 7.9 and 710 still hold if for some 5 we make 3M maximal
only at cardinals @ such that cf{o) < § and sat onga) = 0 otherwise,
provided that in7.10 F also satisfies that og(a) = 0 whenever cf(¥) > 4§,
The proof of 7.9 is unchanged:; in’the proof of 7.10we need to comsider the
case where case 7-8 (ii) holds: i.e., Sv is not maximal at a because

a = iv(a) and EM is not maximal at a. In this case, cf(a) >¢é so

v
gM
cf(a) >4 -and o "(a’) = 0. Thus

i

if a’ = ¢f(a) in K(F,) then cf(a’)
i:a is cofinal in a , 8o cf(av) = cf(a) > & and og(av) =0 as well,

contradicting the choice of §.

This completes our survey of the basic properties of K(F). We end
with illustrations of the use of the theory in finding models with large

cardinals.

7.11 Theorem: Any of the following imply that there is ap inner model of

Hy oK) = ?C++:

(i) K and W+ are both weakly compact
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+
(i1) ¥ is K =~ strongly compact
K +
(iii) ¥ is measurable and 2 > X

HEE,))
(iv) K 1is measurable and K > K

+
(v) there is a K=~ complete ultrafilter U on K such that iu(K) = K
(in particular, AD holds).

(vi)} every K- complete filter can be extended to a K-complete ultrafilter

, + . .
(vii) there is a K — saturated ideal on a successor cardinal K.

Note that (i) and (v) imply the failure of the axiom of choice. We will

prove 7.1l from more basic lemmas.

7.17 Lemma: If there is no model of EK(o(K) = K+ﬂ+) then there iz no

elementary embedding i: K(EM) - ®(F') such that i(k)y > K and

' [ ke1 = SfM/‘K-H.

Proof: 1If there is such an embedding then, as in the proof of Lemma 6.4 we
can show that U = {x CK: ¥ €'i(x)} is a K(EMI\K+1)-ultrafilter, contradicting

the maximality of EM at K, m7.12

Note that all of EM is used to ensure that U is absolutely well
founded. If U is known to be countably complete then SM!\K+1 is all

that is needed. This fact is used in the next proof.

Proof of 7.11 (i): Suppose K and kKt are both weakly compact. Since et

has no special Aronszajn trees, Specker's construction [Sp]' implies that

+
if » <% and M is a model of (ZF +AC) in which ZL =X then
LT o F

&
0 M(K) <&, P(KY N K(EM) and EM!\K+1 can be coded by a subset A of K.

Again, «T > ¢T(E(A))

. . ++ . + .
. In particular, if § = K in K(SM) then &§ < K . Since

so by the weak compactness of K there is a K
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complete ultrafilter U on P(K) N L(A). Thus there is an elementary
embedding i: L(A) = L(A'). Now if F is F, as defined in L(A) then
Fledr =3, [es1 ana 3l x@ [ ern): k@ Moy ~k@ED. wow 37 is
EMM(K)H as defined in L{A’). But A'N K = A, so SM[‘ K+l € L(A")
and hence F'F K+l = EMPK+1. Since U is countably complete, Lemma 7.11
and the remark following it imply that there is a model of ®Ek o(K) = K++.

O 7.1 (i)

The other clauses of Theorem 7.1 all follow from the following

lemma:

+
7.13 Lemma: Suppose there is no model of HK(o(K) =K +). Then for each

+
ordinal K there is a § such that § <K * in K(B*"M) and 1I(K) <§ for

all elementary embeddings i: V - N such that wN ~ WN.

Proof: Let 1 be any such embedding. We can assume N = {{i(f)(w): w € wi(K)}.
Let & be the sequence which is maximal at ordinals o with cf(&) < im(K)
and has 03(0{) = 0 elswhere. ©Now zince i(iw(?()) = iw(K)’ 3 = i(F) also
has 031(05) = 0 when cf(w) > im(KI). Thus by Theorem 7.10and the remark
following it there is an iterated ultrapower j: K(F) = K(¥'). Both
{v:ij) = v} and {v:i(v) =vl are )=—closed for \ > jw(K), so both
sets are thick and their intersection T = {v: i(v) = j(v) = v} 1is also
thick. Now let p:R(F') = H(T)=<K(F) be the transitive collapse of the
skolem hull of T. Then F is full and there is an iterated ultrapower
k: K('&'M) - K(F"). Then Pk: K(SM) ~ K(¥) and since 3/\ K+1 = EM!‘K-!-I
Lemma 7.10 implies pk(K) =K. In particular, KX = p(K) so0

K € range(P) = H(T') and i(K) = j(X).

We now have an iterated ultrapower j: K(’-}M) = R{F) such that 3I(K) = i(K).

In addition we know that F 1is maximal in N at all ordinals less then



7-18

iw(K) > i(K) = j(K). Hence if j 1is the direct limit of maps

i : K(Ev) - ult(K(g\;)’&’\)(a\) ’b\)) where B"'o = F then for all v

J\J,\H—l' M’

{with a, < j(K), which are the only ones relevant) we must have Sv(av,bv) g N.

: ++
We will first use the fact that "N G N to show that this implies jJ(K)< # .,

&
+ ++
Suppose not, so a < j(K) for all v < K+ . Since by assumption o M(K) < K,

++ . :
we can find a statiomary subset T of K guch that each ordinal in T has

cofinality ® and if v,w €T and v < v’ then j {a ’bv) =(a ,b ).
\)\)’ A \)f \),
Let v €T be a limit point of T and let (vn: n € w) be a sequence of

members of I cofinal in +. Then Sv(a_u,bv) ={xcC a Em¥n > m a\J € x}.
n
Since "N C N, (av :n € w) € N and hence Sv(au ’bv) € N, which is impossible.

n
++
The contradiction shows that j(X) < K .

++

To find a bound § < K in K(&M) we will have to refine this
argument. Suppose j 1s an iterated ultrapower as above, obtained by taking
ultrapowers by B*"(av ’bu)' We can always reorder the ultrapowers if necessary

to ensure that a < a if v’< v . 1In order to make the argument clearer
4
Y]

we will assume j has this property. We will call- v good if either v 1is

a successor ordinal, cf(v) > w, or else v 1is not a limit of ordinals

v/ < v such that 1 (a )=a and i (b )>Db . Wecall j good if
\)[\) \)’ \)"\) \J’ v

every v 1is good in j. Then any j with the given properties must be good:
otherwise there is a v and a sequence (\Jn: n < w) cofinal in v such that

i (a Y=a and i (b ) > b . By the argument above we cannot have
VoV W v VoM v T Ty
n n n n

i b for infinitely many n, soe b >5t for sufficiently large
VooV vy v Vo v

n. Then Sv(av ’bv) ={x C a: Iuifn > m x1N a\"ﬂ € Ev(avn,?un)} where

ln = C(av’b\)"]vn,v(b\)n))(avn) and again a\)(a\) ’b\;} € M, which is impossible.

'_l
~
o
et

1]

We now define a map k inside K(EM) which is good in K(&M) by

recursion on wvw: If we set QO =X and if k\): K(C}O) - K(Qv) has been

M
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. . r‘ -4 a
ldeflned then kv v+1'K(*v} ult(K(Qv)’qv(cv’dv)) where (cv,dv) is the

L

least pair with <, > ¢ for v’ < v that will let v be good for k 1in

!
v

K(SM). Since the construction is entirely inside K(EM), the argument above
shows that Lk(K) < gt in K(SM). We set & = k(K), and it only remains to
show that if j is any good iterated ultrapower then j can be embedded into
k, so j(K) € k(K) = 8. We will define an increasing map o:4(j) - (k)

such that j is obtained by taking only the ultrapowers in the range of 0.

This will canonically define maps p,: K(Ev) - R(G ) so that

ag(v)

(co(v)’dc(v)) = pv(av’bv) and the diagrams below commute:

Ko(u),o(v")

Ky () %K(Qﬁg(v,))
PV o,
W
j rf
R(3) vy — > R(F )
Ay

"< vl 1is less than

A4
Suppose Gf*v has been defined and ﬂv = sup {o(v ) +1: v
the length of k. Then there is a map 5;: K(ﬁv) - K(QTl ) and it is easy to
v
see that there is ¢ > T such that (Cv’dv) = ijﬁs(av,bv). We set o(v) =0,

g0 Thus o{v) can be defined for all v < L{(}) so long as

Py = Jﬂcpv'
ﬂv is less than AL{(k). Suppose v < L(j). If cf(v) > w then

cf(ﬂv) = ¢f(v) > w in the real world. Then ﬂv certainly has cofinality
greater than w in K(EM) so ﬂv # 4(ky., If v =vw'+1 then ﬂv =g(v')+1

is also a successor, so again ﬂv # 2(k). Hence we can assume cf(v) = w

and since j 1is good and v 1is a limit ordinal there is v, < v such that
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{1y there is (a,b) such that jv v(a,b) = (av’bv) and for all vy with
o

vy <v <y we hava Jvlv(avl’bvl) < (av,bv).

Hence ﬂv < (k) will follow from the statement that for all v < L(k),

if v, < v satisfies (1) then ﬂv is not larger than the least T > G(vo)
Y = - .

such that (an,bﬂ, knéﬂpv(a,b) where ﬂo c(vo). But thig statement

can be proved by an easy induction on vy 17.13

Proof of 7.11: We have already proved (i). The hypotheses of (ii), (iii)

and (iv) immediately imply that there is a map i:V —~ M with LL)MC M and
i(K) > K++— in K(EM) and hence imply the existence of a model of

BEK o(K) = K++ by Lemma 7.13. Suppose U is a K complete ultrafilter on
X and iU(K) = K+. Since K(EM) satigfies the axiom of cheice,

++ (K(F)
Thus Lemma 7.13

+
%) > k" an R(F,) so K = iUy >«
implies (v) as well. We follow Kunen in proving (vi): By Lemma 3 of [RK 71],
if every K complete filter over X can be extended to an ultrafilter then

for each 4 < (ZK)+ there is a ultrafilter U such that iU(K) > &. Thus

(vi) follows from Lemma 7.13.

For (vii) we need a slight extension of 7.13. Let I be a K+
saturated ideal on X. We can assume that I 1is normal [Sol.

Let PI be the notion of forcing with conditions x © K such that x & I

and with x <y 1f xz-y € I, and let U be PI-generic over V, the
universe of sets. Then U is a ultrafilter on P(K) 1 Vv, K is the first

K
ordinal moved by iliyam=v /U, and M is well founded. Since K 1is

+HV(U)) , +

+
a successor, say K =i we have 1iU(K) <A Since I is K

+ [’
saturated €' is a cardinal in ¥(U) so iV(k) < €T, Bur V() >« so
. . 5 ++(RGE,)
17Ky =K ., Thus i (X} > K . Now 1 is im V(U) rather than in

V, but the proof of Lemma 7.12 will go through if we verify that M 1is
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closed under countable sequences in V(U) as well as in U and that the
maximal sequence SM as defined in V(U) is the same as in V. Now if

K H- ((xn: n € w) is a sequence of members of M) then (see [Sok)

there is a sequence (fn: n € w) in V such that K i|- "fnxn= [fn]. Then
'(xn: n€ w) = [?w(fn(v):v < ¥K)] € M, so L'JMCZ M in V(U). The other

question is interesting enough to isolate as a separate lemma, which concludes

the proof of Theorem 7.11.

7.14 Lemma: If V(G) is a set generic extension of V then (i) for all
& in Vv, K(E)(V(G)) = K(E)(V) and (ii) Iy"M ig still a full, maximal
sequence in V(G).

Proof: Let G be P-generic over V and suppos.e ‘P' = §. Then

WHY L HV(E) e » > 6. Tt follows that 3, is still full in WG,

L]

since if M\, K(EMF\)) as defined in V and v 1is a singular cardinal

then (M) = \)+(V) = \J+(V(G)). Any new EMF\) mice would collapse \)+,

so there are no EMF\J mice for amy Vv and hence no new F-mice for any &F.

Now Lemma 7.4 has the hypothesis that there is no model of 3K o(K) = K.‘++,

and it is not immediately obvious that this is true in V(G). However the
proof of 7.4 only used the existence of a full sequence, and we do know that

EM is still full. Hence 1f EM is not maximal in the extension V{G)

then at least the K(SMFO!)—ultrafilter U 1is unique. But it is still

unique in V(GXG’) if GxG' is Px P-generic over V. If U=1'G in

J
V{G) then let U'=TG in V(G'). Then U and U’ are

14

K(EMrd)-ultrafilters in V(6XG'), so U =U’. Then there cannot be a
set x € K(EM 1\’1) and conditions p, p’ such that p !l- x€ U and
p’ H- x9dU. Thus U ={x:3pp H— x€ U} is in the ground model V, contradicting

the fact that EM is maximal there. 1 7.14, 7.11



%

The following goes at the end of section 7 of

“The Core Model for Sequences of Measures, I11¢

I have frequently refered to this paper +for

lemma 1& below but, as Steel pointed out to me, It
wasn 't actually in the paper.

July 1985

W. Mitchell
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We conclude with one further lemma which, while it is not needed for the
maijor results here, has proved extremely useful in later work. The proot is
made considerably significantly simpler by using the following lemma, due to
Dodd and Jensen [ D lemma 8.12 1 which was refered to in part I of this paper:

7.15 L emna: Suppose that M is a well founded model of set theory,
iz M ———3 N is an iterated ultrapower, and oz M —— N is another I,

elementary embedding. Then i{o) f of{ax) for all ordinals o = M.

7.16 Lemma: I+ there is no model of 3k o{w) = «** then every elemenatary

embedding iz K{¥y} - N into a well founded model N is an iterated

ul trapower by measures in Fy-

Proof: We will prove the lemma assuming that i is set based; that is, there
is &2 & such that M = {i{Ff3{g¥: £ = K(?ﬁ)} and ¢ & &F. The complete lemma
follows from this, for if i is arbitrary then the maps i g,
i
iz KAy —a M, & {idf3(id: F = K{Fy) and ¥ < & <« N,

are all set based and hence iterated ultrapowers. An initial segment of the



iterations of i; will map an initial segment of ¥y onto 1 {(Ffd = ilFy)ia. As
5 runs through the ordinals these initial segments of the iterations iz will

it together to vield i.

Since i is set based it is easy to see that N = K(i(?ﬂ}), that i{?ﬂ) is

strong and full. Thus by lemma 7.10 there is an iterated ultrapower
dr KiFy) = K itFy ), and we only need to show that i = j. Since i is set

based, T = {%¥: i(¥) = ¥} is thick, and lemma 7.15 implies that ¥ < 3{(¥ £ 1i(¥}
= ¥ for ¥ in I'. Let

if: N7 & e ifW) = jO¥13 « K{Fu}.
Then N’ is full, and so there is an iterated ultrapower i': K(FRy) ———3 [
Then 31 ;K{Fy) — Ki¥y), and so must be the identity by the maximality of

Fm- Thus i’ is the identity, which implies that 1 = J-

2 7.00

[D1 A. J. Dodd, The Core Hodel, L.M.5. Lecture Notes series no. 61 (Cambridge
University Fress, 19832).
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