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Abstract

Woodin has shown that if there is a Woodin limit of Woodin cardinals
then there is, in an appropriate sense, a sharp for the Chang model. We
produce, in a weaker sense, a sharp for the Chang model using only the
existence of a cardinal x having an extender of length k%,
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1 Introduction

The Chang model, introduced in [Cha71], is the smallest model of ZF set theory
which contains all countable sequences of ordinals. It may be constructed as
L(¥Q), that is, by imitating the recursive definition of the L, hierarchy: setting
Co = & and Coyq = DefCe (C4), but modifying the definition for limit ordinals
a by setting C, = [w]* U, -, Ca- Alternatively it may be constructed, as
did Chang, by replacing the use of first order logic in the definition of L with
the infinitary logic L, «,. We write C for the Chang model.

Clearly the Chang model contains the set R of reals, and hence is an exten-
sion of L(R). Kunen [Kun73] has shown that the axiom of choice fails in the
Chang model whenever there are uncountably many measurable cardinals; in
particular the theory of C may vary, even when the set of reals is held fixed. We
show that in the presence of sufficiently large cardinal strength this is not true.
This work is inspired by an earlier unpublished result of Woodin, which states
that if there is a Woodin limit of Woodin cardinals, then there is a sharp for
the Chang model. Our result is not comparable to Woodin’s: ours has a much
weaker hypothesis, but a much weaker conclusion. Perhaps the most striking
aspect of the new result is its characterization of the size of the Chang model:
although the Chang model, like L(R), can have arbitrary large cardinal strength
coded into the reals, the large cardinal strength in the Chang model, above that
of L(R), is at most o(k) = k*“! 4+ 1 even in the presence of large cardinals in
Va

The next three definitions describe our notion of a sharp for C. Following
this definition and a formal statement of our theorem, we will more specifically
discuss the differences between our result and that of Woodin.

As with traditional sharps, the sharp for the Chang model asserts the ex-
istence of a closed, unbounded class I of indiscernibles. In order to state the
conditions on I, as Definition [1.3] we need two preliminary definitions:

Definition 1.1. Say that a subset B of a closed class I is suitable if (a) it
is countable and closed, (b) every member of B which is a limit point of I
of countable cofinality is also a limit point of B, and (c) it is closed under
predecessors in 1.

We say that suitable sequences B and B’ are equivalent if they have the same
order type, and agree about which of their members are successor members of
1.

Note that if B is suitable and 3’ is the successor of 8 in B, then either 3’ is
the successor of § in I, or else 8’ is a limit member of I and cf(8’) > w. Indeed



clauses (b) and (c) of the definition of a suitable sequence are equivalent to the
assertion that every gap in B, as a subset of I, is capped by a member of B
which is a limit point of I of uncountable cofinality.

Definition 1.2. Suppose that T is a collection of constants and functions with
domain in [k]™ for some n < w. Write Lp for the language with symbols
{=,€} U T (identifying T with a corresponding set of constant and function
symbols). A restricted formula in the language Lr is a formula such that every
variable occurring inside an argument of a member of T is free in .

Definition 1.3. We say that there is a sharp for the Chang model C if there is
a closed unbounded class I of ordinals and a set T of Skolem functions having
the following three properties:

1. Suppose that B and B’ are equivalent suitable sets, and let ¢(B) be a
restricted formula. Then

CE¢p(B) <= ¢(B).

2. Every member of C is of the form 7(B) for some term 7 € T and some
suitable sequence B.

3. If V' is any universe of ZF set theory such that V/ 2 V and RV =RV
then, for all restricted formulas ¢

CV' E¢(B) < CY  ¢(B).
for any B < I which is suitable in both V and V’.

Note, in clause 3, that CV' may be larger than CV. A sequence B which
is suitable in V' may not be suitable in V’, as a limit member of B may have
uncountable cofinality in V' but countable cofinality in V’. However the class I,
as well as the theory, will be the same in the two models.

Recall that a traditional sharp, such as 0, may be viewed in either of two
different ways: as a closed and unbounded class of indiscernibles which generates
the full (class) model, or as a mouse with a final extender on its sequence which
is an ultrafilter.

From the first viewpoint, perhaps the most striking difference between 0
and our sharp for C is the need for external terms in order to generate C from
the indiscernibles. From the second viewpoint, regarding the sharp as a mouse,
the sharp for the Chang model involves two modifications:

1. For the purposes of this paper, a mouse will always be a mouse over the
reals, that is, an extender model of the form J,(R)[€].

2. The final extender of the mouse which represents the sharp of the Chang
model will be a proper extender, not an ultrafilter.

It is still unknown how large the final extender must be. We show that its
length is somewhere in the range from (@1 to £« inclusive:



Theorem 1.4 (Main Theorem). 1. Suppose that there is no mouse M =
Jo(R)[E] with a final extender E = &, such that cf(length(E)) > w and
length(E) is at least k't @+ in J(R)[E]. Then K(R)C, the core model
over the reals as defined in the Chang model, is an iterated ultrapower
(without drops) of K(R)V ; in particular, there is no sharp for the Chang
model.

2. Suppose that there is a model L(R)[E] which contains all of the reals and
has an extender E of length (m+w1)L(R)[‘g], where K is the critical point of
E. Then there is a sharp for C.

This problem was suggested by Woodin in a conversation at the Mittag-
Lefler Institute in 2009, in which he observed that there was an immense gap
between the hypothesis needed for his sharp, and easy results in the direction of
the lower bound in clause 1 at, for example, a model with a single measure. At
the time I conjectured that the same argument might show that any extender
model would provide a similar lower bound, but James Cummings and Ralf
Schindler, in the same conversation, suggested as more likely the bound exposed
in Theorem [L.4(1).

I would also like to thank Moti Gitik, for suggesting his forcing for the proof
of clause 2 and explaining its use. I have generalized his forcing to add new
sequences of arbitrary countable length. I have also made substantial but, I
believe, inessential changes to the presentation; I hope that he will recognize his
forcing in my presentation. Many of the arguments in this paper, indeed almost
all of those which do not directly involve either the generalization of the forcing
or the application to the Chang model, are due to Gitik.

1.1 Comparison with Woodin’s sharp

Our notion of a sharp for C differs from that of Woodin in several ways. We
will discuss them in roughly increasing order of importance. The first two are, I
believe, inessential: (i) The theory of our sharp can depend on the set of reals,
while the theory of Woodin’s sharp does not; however the invariance of his theory
is due to the presence or absence of large cardinals, not to the definition of the
sharp. An appropriate analogy is with the sharp for L(R), which is equivalent
to the existence of a mouse over the reals having a measurable cardinal. Woodin
has shown that the theory of this mouse stabilizes in the presence of a class of
Woodin cardinals, and the same proof applies to our sharp for the Chang model.

(ii) Woodin’s sharp is defined in terms of the infinitary language L, w,,
whereas ours uses only first order logic; however these two languages are equiv-
alent in this context: since C is closed under countable sequences and C, < C
whenever « is a member of the class I of indiscernibles, the existence of our
sharp implies that any formula of L, ., is equivalent to a formula of first order
logic having a parameter which is a countable sequence of ordinals.

The status of the next two differences is unclear at this point, and requires
further study. (iii) Woodin’s sharp allows for any countable subsequence of I,
while we allow only sequences which have all of their gaps capped by a limit



point of I of uncountable cofinality. This allowance is somewhat relaxed in
Theorem [3.6] and may be sensitive to an improved choice of the set of terms for
our sharp; however I believe that this patterning of the indiscernible sequences
reflects basic information about the Chang model.

(iv) The notion of restricted formulas is entirely absent from Woodin’s re-
sults: he allows the terms from T to be used as full elements of the language. 1
believe that further work, with a better choice of terms, will eliminate the need
for restricted formulas. The failure of this conjecture would expose a major
weakness in our notion of a sharp.

Finally, (v) Woodin’s construction is stronger in a way which makes it some-
what orthogonal to our construction: he has observed, in a personal communi-
cation, that his construction yields a sharp for a much larger model C* which
includes, in addition to all countable sequences of ordinals, the non-stationary
ideal on P, (\) for each regular cardinal A. Thus, although his work does imply
as a corollary that there is a sharp for C, the two constructions are complemen-
tary rather than in competition.

It should be emphasized that, as indicated by clauses (iii) and (iv) above,
the definition given in this paper of the notion of a sharp for the Chang model
and, especially, the specific choice made of the set of terms in the language and
of the class I of indiscernibles should be regarded as preliminary. Their ultimate
resolution will probably depend on closing the gap in the hypotheses of the two
parts of Theorem [I.4] to determine the exact large cardinal strength of the sharp
of the Chang model.

1.2 Some basic facts about C

As pointed out earlier, the Axiom of Choice fails in C if there are uncountably
many measurable cardinals; however, the fact that C is closed under countable
sequences implies that the axiom of Dependent Choice holds, and this is enough
to avoid most of the serious pathologies which can occur in a model without
choice. For life without Dependent Choice, see for example [GK12], which gives
a model with surjective maps from P(X,,) onto an arbitrarily large cardinal A
without any need for large cardinals.

The same argument that shows that every member of L is ordinal definable
implies that every member of C is definable in C using a countable sequence of
ordinals as parameters.

In the proof of part 1 of Theorem [1.4| we make use of the core model K(R),
defined inside C, and in the absence of the Axiom of Choice this requires some
justification. In large part the Axiom of Choice can be avoided in the construc-
tion and theory of the core model, since the core model K (R) itself can be well
ordered by using countably complete forcing to map the reals onto w — a pro-
cess which does not change the Chang model. However one application of the
Axiom of Choice falls outside of this situation: the use of Fodor’s pressing down
lemma, the proof of which requires choosing closed unbounded sets as witnesses
that the sets where the function is constant are all non-stationary. This lemma
is needed in the construction of K(R) in order to prove that the comparison of



pairs of mice by iterated ultrapowers always terminates. However, this is not a
problem In the construction of K(R) in C, as we can apply Fodor’s lemma in V,
which we assume satisfies the Axiom of Choice, to verify that all comparisons
terminate.

The proof of the covering lemma involves other uses of Fodor’s lemma; how-
ever we do not use the covering lemma.

1.3 Notation

We use generally standard set theoretic notation. We use 2 to mean the class of
all ordinals (sometimes regarded as an ordinal itself). In forcing, the notation
p || ¢ means that the condition p decides ¢, that is, either p |- ¢ for p |- —¢.
If s is a condition in a forcing order P, then we write P for the forcing below
s, that is, {p’ € P | p’ < p}. We use h[B] for the range of h on B, that is,
h[B] = {h(b) | be B}. We use [X]" for the set of subsets of X of size k. If
is a well order then we use otp(n) for its order type.

If E is an extender, then we write supp(F) for the support, or set of gener-
ators, of E. Typically we take this to be the interval [x,length(E)) where k is
the critical point of F; however we frequently make use of the restriction of E to
a non—transitiveﬂ set of generators: that is, if S € supp(E) then we write E()S
for the restriction of E to S, so Ult(V, EQ)S) = {i®(f)(a) | feV nae [S]=¥}.
We remark that Ult(V, EQ)S) = Ult(V, E), where E is the transitive collapse
of E, that is, the extender obtained from FE by using the transitive collapse
o: [k,length(E)) = supp(E) n {i(f)(a) | f € V A a € [S]<*} and setting
its constituant ultrafilters by defining (E), = Eg-1(q)- This identification is
frequently used in this paper in arguments which seem to naturally use the re-
stricted extender E()S, but E()S is not a member of the model in question.
The fact that the collapse E is a member the model justifies these arguments.
This use will not always be explicitly stated.

We make extensive use of the core model over the reals, K(R). However
we make no (direct) use of fine structure, largely because we make no attempt
to use the weakest hypothesis which could be treated by our argument. The
reader will need to be familiar with extender models, but only those weaker than
strong cardinal, that is, without the complications of overlapping extenders and
iteration trees. For our purposes, a mouse will be a model M = J,(R)[€], where
R is the set P(w) of reals and £ is a sequence of extenders, and it generally can be
assumed to be a model of Zermelo set theory (and therefore equal to L, (R)[E]).

If M = Jo(R)[€] is a mouse then we write M|y for J,(R)[€v], that is,
the restriction of M to ordinals below ~ without including the active extender
(if there is one) &, with index v. We most commonly use this as N|Q when
the model N is the result of an iteration of length Q and the length « of N is
greater than ).

'Tn this context, we regard supp(E) = [k, \) as “transitive” despite its omission of ordinals
less than k. We could equivalently, but less conveniently, use supp(E) = length(E).



2 The Lower bound

The proof of Theorem 1)7 giving a lower bound to the large cardinal strength
of a sharp for the Chang model, is a straightforward application of a technique
of Gitik (see the proof of Lemma 2.5 for § = w in [GM96]).

Proof of Theorem[1.4|(1). The proof uses iterated ultrapowers to compare K (R)
with K(R)C. Standard methods show that K (R) is not moved in this compar-
ison, so there is an iterated ultrapower ( M, | v < 6 ), for some § < Q defined
by My = K(R), M, = dirlim{ M, | o’ < o’/ < a} for sufficiently large o’ <
if v is a limit ordinal, and M, 1 = Ult(M*, E,) where E, is the least extender
in M, which is not in K(R)® and M* is equal to M, unless E,, is not a full
extender in M,,, in which case M} is the largest initial segment of M, in which
FE,, is a full extender.

We want to show that (i) this does not drop, that is, M} = M, for all «,
and (ii) My = K(R)C.

If either of these is false, then # = € and there is a closed unbounded class
C of ordinals o such that crit(E,) = a = is(a). Since o(k) < Q for all it
follows that there is a stationary class S < C of ordinals of cofinality w such
that iy o (Fo) = E, for all @/ < ain S. Fix a € S n1lim(S); we will show that
M, contradicts the hypothesis of Theorem [1.4{(1).

To this end, let (a, | n € w) be an increasing sequence of ordinals in
S such that | J,,c,, an = . An argument of Gitik (see [GM96, Lemma 2.3])
shows that the threads belonging to generators of F, are definable in C using
a = {a, | n € w) as the only parameter. That is, there is a formula ¢ such
that for all v < (a*®)Ma the formula ¢(da, g,a,v) is true in C if and only
if i, o(Bn) = v for all but finitely many n € w. If n < a*@+1) then this
can be extended to all ¥ < n by using the thread (ig! (n) | n < w) as an
additional parameter. Since E, ¢ C it follows that length(E,) > s*(@*1,
which contradicts the hypothesis of Theorem . O

3 The upper bound

The proof of Theorem will take up the rest of this paper except for some
questions in the final Section

The hypothesis of Theorem is stronger than necessary: our construc-
tion of the sharp for C uses only a sufficiently strong mouse over the reals, that
is, a model M = J,(R)[€] where £ is an iterable extender sequence.

At this point we describe a generic procedure for constructing a sharp from a
suitable mouse. For this purpose we will assume that M is a mouse satisfying the
following conditions: (i) |M| = |R|, definably over M, indeed (ii) there is an onto
function h: R — M which is the union of an increasing w; sequence of functions
in M, and (iii) M has a last extender, E € M, such that length(E) = (kT«1)M.
We can easily find such a mouse from the hypothesis of Theorem by
choosing a model N of the form L.(R)[£] with the last two properties and



letting M be the transitive collapse of Skolem hull of R Uw; in N. At the start
of section where we begin the actual proof, we will specify more precisely
what assumptions we make about the mouse, but we have made no effort to
determine the weakest mouse for which our techniques work.

We add one further condition on M: (iv) the least measurable cardinal of
M should be larger than 0™ the least cardinal A of M such that A + f[R]
for any function f € M. Any mouse satisfying the conditions (i-ii) can be
made to satisfy condition (iv) by iterating the least measurable cardinal past
0. The iteration map will not be an elementary embedding, but it will preserve
conditions (i-iii).

This condition would allow us to assume the Continuum Hypothesis by using
M]g] instead of M, where g is a V-generic map collapsing R onto w;. Doing
so would not add any new countable sequences and hence would not affect the
Chang model. This will be needed in sections [£.6] and [£.7] in order to construct
M-generic sets; however we will not do so until then: but the reader certainly
may, if desired, assume that this has been done.

The following simple observation is basic to the construction:

Proposition 3.1. The mouse M is closed under countable subsequences.

Proof. By the assumption (ii) on M, any countable subset B € M is equal to
h[b] for a function h € M and a set b < R. Since M contains all reals, and any
countable set of reals can be coded by a single real, b€ M and thus Be M. [

As in the case of 0f, we obtain the sharp for the Chang model by iterating
the final extender E out of the universe.

Definition 3.2. We write i,: My = M — M, = Ult, (M, E). In particular
My, is the result of iterating E out of the universe, so that ig (k) = Q.

Let k£ = crit(E). We write k, = i,(k) and I = {k, | v € }. The generators
belonging to k, are the ordinals ig , () such that £ < 8 < (kT«1)M.

—.

Note that every member of Mg is equal to igq(f)(8) for some function
f € M with domain s and some finite sequence 8 of generators. The following
observation follows from this fact together with Proposition |3.1

Proposition 3.3. Suppose that N 2 Mq|Q is a model of set theory which
contains all countable sets of generators. Then CN = C.

Proof. 1t is sufficient to show that N contains all countable sets of ordinals,
but that is immediate since every countable set B of ordinals has the form
B = {ig(f2)(Bn) | n € w}, where each f, is a function in M and cach j,
is a finite sequence of generators. The sequence (f, | n € w) isin M € N
by Proposition and the sequence <En | n € w)isin N by assumption, so
BeN. U

Clearly the class I gives a sharp for the model Mq|Q in the sense of Defini-
tion (with suitable sequences from I replaced by finite sequences), but it is



not at all clear that I gives a sharp for C as well. We show starting in section|3.3]
that it does give a sharp when defined using the mouse specified there.

We conjecture that the sharp for the chang model can be obtained exactly
in the same way as the sharp for other models:

Conjecture 3.4. Let M be the least R-mouse such that M ¢ C. Then K(R)®
is the lower part (below ) of an iterated ultrapower of M, and M provides a
sharp in (at least) the sense of this paper.

We will refer to this hypothetical mouse M as the “optimal” mouse. A ver-
ification of this conjecture would determine the correct large cardinal strength
of the sharp, and could be expected to remove some of the weaknesses which
have been remarked on in our results.

3.1 Why is suitability required?

The next result apparently shows that the restriction to suitable sets B in the
Definition of a sharp cannot be removed. The qualification “apparently”
is needed because Proposition [3:5] does not apply to the sharp which we con-
struct, but only to the optimal sharp which we conjecture exists. Nevertheless,
Propositionis an important motivation for our argument for Theorem .

Following Proposition Theorem [3.6]is a strengthening of our Main The-
orem which comes close to suggesting that Proposition is the only
restriction (at least in this direction) to the sharp for C.

The core model K (R)® of the Chang model should not be expected to equal
Mq|Q, where M is the optimal mouse; rather it will be an iterate of that model.
This is because all of the members of I are measurable in Mq|Q, but it is likely
that every measurable cardinal of K (R)® has cofinality w.

Proposition 3.5. Assume that K(R)C is an iterate of Mq|Q2, with an iteration
map k: Mq|Q — K(R)® such that k(k,) = k, for all k, € I. Suppose further
that k is consistent with the set T of terms.

Then for any two closed, countable subsets B and B’ of I which disagree
infinitely often about either (i) which adjacent members are not adjacent in I
or (i) which members are limit points of I of uncountable cofinality, there is a
restricted formula ¢ such that C | —(¢o(B') <= ¢(B)).

We will not give a precise definition of the assumption that “k is consistent
with the set T of terms”; however we will point out where it is used in the proof.

Proof. First suppose that B = (A, | v < &) and B’ = (X, | v < &) are
counterexamples to clause (i). Thus they are increasing subsequences of I of
the same length, and there is an infinite increasing sequence (v, | ¥ < w) of
ordinals smaller than ¢ such that for each n, A,, +1 is the successor in I of A, ,
but A, ., is larger than the successor in I of A, .

Let U, be the ultrafilter on )], ., associated to the image of E on A}, ;.
That is, if £, is the ordinal such that A, ., = k¢, , then

U, :ign({ngﬂﬁeiE(x)}).



Now let 7,, be the least member of I above X, , so that A, < 7, < A, ;.

Then {7, | n € w) is Mq|Q-generic for the Prikry forcing with conditions
(@A) |3k <wVi<ka; <N, AVizkAeU)},

which adds a single indiscernible for each of the ultrafilters U,. In particular,
there exists such a Prikry sequence (¢, | n € w) such that \,, <ec, <X\, ,, for
each n € w. This fact is preserved by the iteration k: there is a K (R)C-generic
Prikry sequence for the sequence of ultrafilters k(U,,), each member of which
lies in the interval (k(X, ), X, ;). There is a restricted formula (B’) which
asserts that there is such a sequence, provided that the terms of the language
are consistent with k in the sense that there are terms 7y and 75 in T such that
mi(A,,) = k() and m2(\,, +1) = k(Uy) for each n < w. Then ¢(B’) is true in
C.

To see that this ¢(B) is false in C, let ¢, be any sequence with k(\,,) <
Cn < Ay, +1 for each n. Since A, 11 is the next member of I, the assumption on
¢, implies that there is a function f € M such that ¢, < koiq(f)(k(\,)) <
Ay, 11 for each n < w. Since by assumption k: Mq|Q — K(R)C, the function
koig(f) A\, 11 is in K(R)C, and hence the sequence (¢, | n < w ) is not generic
over K(R)C. Thus ¢(B) is false in C, and this completes the proof for clause (i).

Now suppose B and B’ do not satisfy clause (ii): there is an infinite sequence
{Vp | n < w) of ordinals below £ such that for each n < w, A, is a successor
member of I but ], is a limit member of I of uncountable cofinality. Then the
analysis given in the first part of the proof shows that if U, is the ultrafilter on
Ay, then for any sequence (v, | n < w) such that v, < ], for all n € w, there is
a K(R)%-generic Prikry type sequence for the sequence of ultrafilters { k(U,,) |
n < w) with the nth member in the interval (v,, ] ). Again (assuming k
is consistent with the terms of T") this statement can be made by a restricted
formula, and that formula is false for B: Let 7, be the immediate predecessor in
I of 7,,. Then the argument given in the first part of this proof shows that there
is no Prikry sequence having each member ¢, in the interval (k(7,),A,, ). O

Note that while Proposition [3.5] says that gaps in B are significant, it does
not attach any significance to the length of the gaps other than the distinction
between gaps headed by a limit or successor member of member of I. Fur-
thermore, it does not attach significance to individual gaps, but only to infinite
sequences of gaps. The following strengthening of Theorem can be proved
by the technique used in Subsection to deal with the special case k ¢ B of
Theorem [1.44(2]).

Theorem 3.6. Call B weakly suitable if B is a countable closed subsequence
of I such that B n X is unbounded in X\ whenever X\ € B and cf(\) = w. Call two
weakly suitable sequences B and B’ equivalent if they have the same length and,
with at most finitely many exceptions, corresponding successor members A € B
and X € B’ satisfy (1) X is a successor point of I if and only if N is, and (ii) if
X and N are successor members of I, then the I-predecessor of X is in B if and
only if the I-predecessor of N is in B'.
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Then Theorem @ holds for weakly suitable sequences under this notion
of equivalence.

3.2 Definition of the set T of terms.

The next definition gives the set of terms we will use to construct the sharp.
This list should be regarded as preliminary, as a better understanding of the
Chang model will undoubtedly suggest a more felicitous choice.

Definition 3.7. The set T of terms of the language for C are those terms
obtained by compositions of the following set of basic terms:

1. For each function f € M (including a constant function) with domain and
range contained in <"k , there is a term 7 such that 7(z) = ip.o(f)(2) for
all z for which the right side is defined.

2. For each 3 in the interval k < 8 < (kT“1)M there is a term 7 such that
T(Ky) = d0,,(B) for all v e Q.

3. Suppose (7, | n € w) is an w-sequence of compositions of terms from the
previous two cases, and domain(7,) S *2(),,. Then there is a term 7 such
that 7(@) = (T (@lky) | n€w) for all @€ “Q.

4. For each formula ¢, there is a term 7 such that if ¢ is an ordinal and y is
a countable sequence of terms for members of C, then

m(t,y) ={zeC, |C, = o(z,y)}.

Proposition 3.8. For each z € C there is a term 7 € M and a suitable sequence
B such that 7(B) = z.

Proof. First we observe that any ordinal v can be written in the form v =
ia( f)(g) for some f € M and finite sequence B of generators. Each generator
belonging to some k¢ € 4 is equal to i¢(B) for some 8 € [KJ, (f{“"l)M), and thus
is denoted by a term 7(k¢) built from clause . Thus any finite sequence of
ordinals is denoted by an expression using terms of type and . Since M is
closed under countable sequences, adding terms of type [3|adds in all countable
sequences of ordinals.

Finally, any set « € C has the form {z € C, | C, = ¢(z,y) } for some ¢, p
and y as in clause . Thus a simple recursion on ¢ shows that every member
of C is denoted by a term from clause (4)). O

The terms specified in clause force the limitation to restricted formulas
in Theorem [L.4|{2)), since the domain of these terms is exactly the class I of
indiscernibles. It is possible that a more natural set of terms would enable this
restriction to be removed, but this would depend on a precise understanding of
the iteration k.

By Proposition [3.8] every ordinal is denoted by a term from T using as
parameters only members of o + 1. This is contrary to the spirit of 0f, where
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the term denoting o may require parameters from I'\(aw + 1). This seems to
be a weakness in our current approach, and may suggest a direction for its
refinement.

3.3 Outline of the proof

Proposition suggests a strategy for the proof of Theorem [1.4{2): find a
generic extension of Mq|Q which contains all countable sequences of generators.
There are good reasons why this is likely to be impossible, beginning with the
problem of actually constructing a generic set for a class sized modeﬂ

Beyond that, many of the known forcing constructions used to add countable
sequences of ordinals require large cardinal strength far stronger than that as-
sumed in the hypothesis of Theorem [1.4] and give models with properties which
are known to imply the existence of submodels having strong large cardinal
strength. However, two considerations suggest that this last problem may be
less serious than it may appear. First, the Chang model may reflect more large
cardinal strength than is apparent, since much of the large cardinal strength in
V' is encoded in the set of reals; and, second, many of the properties requiring
the existence of models with large cardinals are false in the Chang model be-
cause of the failure of the Axiom of Choice. Results involving the size of the
power set of singular cardinals, for example, are irrelevant to the Chang model
since the power set is not (typically) well ordered there.

We avoid the problem of finding generic extensions of a class sized model
by working with submodels generated by countable subsets of I, and we find
that in fact none of the large cardinal structure in V survives the passage to the
Chang model beyond that given in the hypothesis to Theorem

Definition 3.9. If B < I, then we write
Mp = {iq(f)(b) | bis a finite set of generators for members of B}.

If B is closed, and in particular if it is suitable, then we write Cp for the
Chang model evaluated using the ordinals of Mg|{2 and all countable sequences
of these ordinals.

Note that Mp is not transitive; it is a submodel of Mg, and i : M — Mp is
the canonical embedding for any B € I. The definition of Cp implies that if B
and B’ are closed sets with the same order type then Cg =~ Cp/. In particular, if
otp(B) = a+1then Cp = Cp(a41) = Cy,,, Wwhere B(a+1) = {k, |v <a+1}.

The motivation for our work began with the observation that Mpg|Q <
Mp/|Q < Mq|Q) whenever B € B’ < I. Proposition refutes any sugges-
tion that this necessarily extends to the models Cg and Cp/, however it also
motivates Definition [3.10] below.

That proposition says that we must take account of the gaps in B. To be
precise, we will say that a gap in B is a maximal nonempty interval in I\ B. For

2 There is the intriguing possibility that this could be done by using the existence of C.

12



all sets B < I which we consider, every gap in B is headed by a limit point A
of I which is a member of B u {Q} with uncountable cofinality.

Definition 3.10. A subset B of I is limit suitable if (i) its closure B is suitable,
and every gap in B is an interval of the form [\, d) where (ii) ¢ is either Q or
a member of B which is a limit point of I of uncountable cofinality, (iii) A =
sup({0} U B n d), and (iv) A = Ky 4, for some v € Q.

Two limit suitable sets B and B’ are said to be equivalent if they have the
same order type and they have gaps in the same locations. If B is a limit suitable
sequence then we write Cp for the Chang model constructed using only those
countable sequences which are in a suitable subset B < B:

Cp = La~m, (W) where W = U{ [Qn Ms]“ | BS B & B is suitable] }.

The use of K, 4, in clause is for convenience; our arguments would still
be valid if it were only required that A is a limit member of I of countable
cofinality.

Note that if B is a limit suitable sequence then Cpg is not closed under
countable sequences; in particular B is not a member of Cg. Thus if § is the
head of a gap of B then Cp believes (correctly) that ¢ has uncountable cofinality.

Theorem |1.4)[2)) will follow from the following lemma:

Lemma 3.11 (Main Lemma). If B < I is limit suitable then Cg < C.

Note that it is not obvious even that Cp < C, or, more accurately, that Cp
is isomorphic to a subset of C. The proof of Lemma will use an induction
on pairs (¢, ), with ¢ < €, in which the induction hypothesis implies that the
map o,: C*2 — C, f defined by setting

o ({reCl | €5 Fp@,0)}) = {2 e Cu | Cr k= pl@,0.(a)) ),

for each ' <1, a € C,/, and formula ¢ of set theory, is an isomorphism between
C®2 and a subset of C,.

To see that Lemma suffices to prove Theorem (2), observe that any
suitable set B can be extended to a limit suitable set defined by the equation

B'=BU{kyin|k€eBAnew},

that is, by by adding the next w-sequence from I at the foot of each gap of B
and to the top of B. Now let By and By be two equivalent suitable sets. Then
their limit suitable extensions Bj, and B} are also equivalent, having the same
ordertype and having gaps in the corresponding places, so C B, = Cp;. Then
for any restricted formula ¢ we have

CE ¢(Bo) = Cp; = ¢(Bo)
= Cp, Fp(B1) = CE¢(B).
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4 The Proof of the Main Lemma

—

The main tool used in this section is a forcing P(E'1d)/<, defined in M, such
that Cp is definable in Mg[G] where G is an M p-generic subset of i (P(E 4)/<>)
which can be constructed in V[h] for any generic Levy collapse map h: wy =~ R.
The definition of the forcing and exposition of its properties will take up several
sections. The actual proof of the lemma will be given (except for a special case
treated in Section in Section

The forcing we use is essentially due to Gitik (see, for example, [Git02]) and
the technique for constructing the Mp-generic set G is from Carmi Merimovich
[MerQ7]. Gitik’s forcing was designed to make the Singular Cardinal Hypothesis
fail at a cardinal of cofinality w by adding many Prikry sequences, each of which
is (in our context) a sequence of generators for a fixed w-sequence of members
of I. Thus it does what we need for the case when otp(B) = w, but needs
to be adapted to work for sequences B of arbitrary countable length. To this
end we modify Gitik’s forcing by using ideas based on Magidor’s adaptation
[Mag78] of Prikry forcing to add sequences of indiscernibles of cofinality greater
than w. This adds some complications to Gitik’s forcing, but on the other hand
much of the complication of Gitik’s work is avoided since we do not have to
avoid collapsing cardinals in the interval (x*,x7“*), and hence can omit his
preliminary forcing.

Our forcing is based on a sequence E of extenders, derived from the last
extender F of M. We begin by defining this sequence, and at the same time
specify what properties we require of the mouse M.

Definition 4.1. We define an increasing sequence, { N, | v < w; ) of submodels
of M. We write E, for E()N,, the restriction of F to the ordinals in N,,, we
write m,: N, — N, for the Mostowski collapse of N,, and we write E, for
7 E,] =, Y (E))N,.

We require that the R-mouse M and the sequence {( N, | v < wy ) satisfy
the following conditions:

1. M is a model of Zermelo set theory such that R < M, |M| = |R/|, and
cf(QM) = w;.

2. length(E) = (kt1)M.

3. f v/ < v <w then (N, E,v) < (N, E,) < (M, E).
4. "N, ~MC N,.

5. [N, < N,.

&

(i) Kﬂw—rl) S No and M |= |N0| = _“+(w+1), and (11_) for each v > 0
(sup,/ -, |Nl,/|)+(w+1) € N, and M |= |N,| = (sup,,_, |[N,/|) T+,

7. M=, No

3This clause seems to be required for Definition
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We will work primarily with the extenders E,, rather than with their collapses
E,, because this makes it easier to keep track of the generators. However it
should be noted that E, may not be a member of Ult(M, E), so that further
justification is needed for many of the claims we wish to make about being able
to carry out constructions inside M. Since we never actually use more than
countably many of the extenders F, at any one time, the following observation
will provide such justification:

Proposition 4.2. The following are all members of Ult(M, E,):
i P(UV’<V NV/)

e the extender E,, and the map 7, o m,: supp(E,) — supp(E,~), for
each V' < V" <wv

e the direct limit of the set { N,, | v/ < V" < v} along the maps 7' o 7.,
as well as the injection maps from N, into this direct limit

O

Since Ult(M, E,) = Ult(M, E,), this proposition allows us to regard the
direct limit as a code inside M for the extender F, together with its system of
subextenders E,/ for v/ < v.

The hypothesis of Theorem [1.4] is more than sufficient to find a mouse M
and sequence N of submodels satisfying Definition this can be done by first
defining models M’ and {( N], | v < w; ) satisfying all of the conditions except
Clause @, and then taking M to be the transitive collapse of Uu<w1 N!. The
conditions on M are, in turn, much stronger than is needed to carry out the
construction. In view of the fact that there is no clear reason to believe that the
actual strength needed is greater that o(F) = xt©*1 it does not seem that
there is presently any need to complicate the argument in order to obtain an
upper bound closer to o(E) = k11,

We are now ready to begin the proof of Lemma [3.11] Following Gitik we
define, in two subsections, a Prikry type forcing P(ﬁ ) depending on a sequence F
of extenders. Subsections [£:3] and [£:4] develop its properties, and subsection [£.5]
describes an equivalence relation < on its set of conditions. Subsection [4.6]
constructs an Mg-generic subset of ig(P(E1¢)/<), and

Lemma [3.11] under the additional assumption that « € B. Finally sub-
section completes the proof and indicates the technique for proving Theo-
rem 9.0l

—

4.1 The forcing P(F)

Throughout the definition of the forcing, until the end of subsection [.6] we work
entirely inside the mouse M in particular all cardinal calculations are carried
out inside M. We are interested in defining P(E I¢), but for the purposes of
the recursion used in the definition we allow F to be any suitable sequence of

extenders. We will not give a definition of the notion of a suitable sequence
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of extenders. All the sequences used in this section are suitable: specifically,
all of the sequences E 0 for 6 < wy are suitable, all of the ultrafilters { X <
V. | E16 € i(X)} concentrate on suitable sequences, and furthermore, if F is
suitable then so is any ﬁ[['y(h 7) for any 0 < v <7 < (.

A generic extension of M by P(F) would have the form

where £ = (Ry | v < () is a closed subset of k + 1 with k¢ = &, and h =
(hyy | ¢ = v > V') is asequence of functions h, , : [R,,k}) — R,. Each of
the functions h, .- is, individually, Cohen generic; however h, ., will be defined,
in part by Prikry type forcing so that some of its values, lying in the interval
(R, k") form, together with values of other members of the sequence h,
Prlkry sequences.

The ordinal &, will be, for v < (, the vth of the principle indiscernibles
generated by the forcing. Thus k¢ is always equal to  in the forcing P(E 1¢)
in M, and R¢c = Q in the forcing io(P(E1C)). If G is the Mp-generic subset
of iq(P(E|¢)/<) constructed in Subsection then in Mp[G] the sequence
(R, | v < ¢) will be the increasing enumeration of B.

In the generic extension Mp[G], the functions h,, ,» will collectively encode
all countable sequences of generators of the model Mp, as follows: Let 5 =
{Bn | n < w) be any sequence of generators in Mp, with §,, being a generator
belonging to the v,th member %,, of B. Then there will be, in M, a sequence
(&, | n e w) of ordinals in [k, k") such that 8, = h¢,, (ia(&,)) for each n € w.
Since 7 and ig(€) are both in Mg, it follows that 5 € Mp[G].

The conditions of P(F) are functions s with a finite domain such that ¢ €
domain(s) ¢ + 1. The values s(7) of s are quadruples of the form

8(7’) _ (Rs,r,ﬁa‘r’zs,r’gs,r).

The first component specifies the value of k,, and the second component is a
suitable sequence of extenders, F*7 = ( F$™ | vg < v < 7 ) of extenders, where
o = max({—1} u (domain(s) N £*>7)) + 1. Neither of these two components will
change in conditions s’ < s, except that if domain(s’) 2 domain(s), then Fs'r
will be truncated to F*7 [[75,’7, 7).

Like Magidor’s forcing in [Mag78|, the forcing P(F) can be factored below
any condition s: if <TZ | © < n) enumerates the domain of s then the forcing

P(F)|, of conditions s’ < s in P(F) is forcing equivalent to [ Li<n P(Fsm).

The third component z*7 of s(7) ultimately determines the values of the
functions h,, for v < 7. A specific description of this component will be given
next, and that will be followed by a specific description of the final component
A®T which is a sequence ( AST | 4o < v < 7) of sets AST € UST where US™ is
an ultrafilter which will be derived from F27. As in other Prikry type forcings,
the set A%7 is used to limit the possible extensions s’ < s with v € domain(s’).
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Figure 1: The middle component z*7 of s(7). The element at row « and column
B is used to determine hq g. In the case of the top row, this determination is
direct; for the other rows this is indirect, via their use in defining the ultrafilters
U7 from which the sets A;" are taken.

The tableau z*7. The third component z%7 of s(7) is a tableau having the
form represented in Figure [1} It contains, for each pair (v, v) of ordinals with
T =727 >v =0, a function fZ , and for each pair (y,v) with 7 > v >
v = 70, a pair of functions (aZ ,, fZ ). The function fZ , or pair of functions
(aZ ,, fZ,) will ultimately be used to determine the values of the Cohen function
h+ . The elements in the first row will be used to directly determine h ,; while
elements in a row labeled v < 7 will be used indirectly to determine h., by
being used in the definition of the ultrafilter UJ".

The domain of the function fZ , is contained in the interval [£Z, (k?)*) and
is of size at most kZ. This is a standard Cohen condition for a function from

(k%)™ into RZ, except that it takes values of two different forms:

L fZ,(§) = ¢ e k%, and
2. fZ,(§) = hy ,(§) for some 4" in the interval v > +' > v and &' € k2

The first is the usual form for a Cohen condition and asserts that h., (§) = ¢’
More specifically, if s is a condition with 2*7 = z and fZ_(§) = &', then s |-

hr~(€) = €. In the second form, the value h,(€), of f(£) may be taken as a
formal expression. In this case the value of the name h(§) is defined by

if s - hrey(€) = € then s I hyry(€) = €7,
if 5 |- ¢ ¢ domain(h,,) then S hp(€) =0
and otherwise s W hro(€).
This definition uses recursion on 7, since s |- h%l,(ﬁ’) = ¢” depends only on

sy + 1. In the first of these three cases, s I hy ,(§) = £, we will regard the
forms fZ,(§) = &" and fZ ,(§) = hy (') as being identical.
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The domain of the function a27, is also a subset of the interval [&,, &) of
size at most K., but it is disjoint from the domain of f5:7. The range of a3, is
a subset of supp(F;)""). The intention is that if a7 () = «, then h, ,(§) will be
a Prikry indiscernible for the ultrafilter (F57), = {z € P(8) | a €™ (z)}.

Although we usually regard a3, as simply a function, it requires a moder-
ately complicated bookkeeping structure.

Definition 4.3. We put the following requirements on these functions:

1. The domains of a3}, and fJ'7 are disjoint.

2. The domain of a37, is equipped with a layering, which we write as a7 , =
Us<x, @5, |A. This layering satisfies (i) |(aZ ,IA)| < A for each cardinal
A < k. such that s does not force &, #+ A, (ii) aZ |\ S aZ |\ whenever
A< XN, and (iii) a2 ,|A =y .y @[\ for limit cardinals A < &.

S, T

3. f7>y>79">vthenay], ca),

s

For ease of referring to this structure, we will use the following definition:

Definition 4.4. If s is a condition, with 7 € domain(s), then the pattern of a
function @27, in 2% comprises the following elements: (i) the domain of a27,
(ii) the layering of its domain, and (iii) the preordering < on the domain of a7,
defined by £ < & if a37,(§) < a7 (¢).

The pattern of a column (a3, | 7 > > v) from the tableau comprises the
pattern of each member of the column.

We will occasionally speak of the pattern of a condition s, or of other related
objects. This will mean the collection containing the pattern of each column in

the associated tableau or tableaux.

This completes the definition of the tableau z*7. Before continuing with
the definition of the sequence /TS’T, we make some some general remarks on the
reasons for the design of the tableau, and the design of the forcing in general.
An important aim is to ensure that the forcing produces Prikry indiscernibles
for the ultrafilters (F27), of the extender on &, but that no information about
the association between these indiscernibles and the ordinal « is included in
the model Mp[G]. The forcing involves three techniques to arrange this, two
of which have already been touched on: (i) The mixture of Cohen forcing and
Prikry forcing gives a background in which in which the Prikry forcing is hidden,
so that there is no way to distinguish values hs () coming from Prikry forcing
from those which come from Cohen forcing. (ii) The use of the function a7, (£)
in the condition, instead of its value «, ties the Prikry indiscernible to the
essentially arbitrary ordinal £ € [£37, (k37)"), thus avoiding any explicit tie
between the indiscernible and the ordinal « for which it is a Prikry indiscernible.
(iii) The equivalence relation < on P(F), which will be defined in Section
will explicitly disassociate the Prikry indiscernible from the ordinal a.

To see why this disassociation is necessary, recall that the observation that
Mpg[G] is closed under countable sequences of ordinals used the claim that for

18



every generator 8 = i,,(f’) belonging to some K, = k,, € B, there is some
¢ € [k, k1) such that 8 = h¢ (10 (€)). If we used generic subset G of the un-
modified forcing P(E (), rather than generating a generic subset of P(E 1¢)/<,
then the only generators of x, for which we would have names h¢ -, (io(€)) would
be those in {J, . iy [supp(Ey)]. By enforcing the disassociation, we make it pos-
sible to modify the conditions to give such names to all generators.

The sets A27. We have finished the definition of the conditions s € P(F)
except for characterization of the sets A37 and the ultrafilters U™ of which
they are members.

For convenience, we write P* for the set of quadruples which are possible
values of s(7). In Section we will define an order <* on the sets P* which
will induce the direct order <* on P(F). In the rest of this section we assume,
as a recursion hypothesis, that this order has already been defined on all P,;“ for
v <T.

The members of A3™ are members of P with some additional information.
Specifically, AS" < P:f; where

Definition 4.5. The members of P, are quadruples
w = (R;”,ﬁw7zw,Aw)

satisfying the following conditions:
L. kY

2. 2" has the form of the tableau in Figure 2]

and F™ are as described above for Pw*'

3 Urz2v>=y+1>v >, then af,'u:,, is a function with a domain which
has size 5% and is contained in [£%, (k¥)1), and with range contained in

Q\ supp(Fy).

4. (R}j,ﬁw,z“’ [[70,7),Ew) € P¥, where 2 [[y0,7) is the restriction of 2 to
the rows with indices in the interval [y, ), that is, those below the line
in Figure [2]

If w',we P¥_ then w' <* wif
- /!

1. (R$/’F“w/7zw/ r[’y07’y)7Aw ) g* (ﬁ$7ﬁw7zwr[’707’y)7gw) in P:/k7 and

w

y/
2. Ifrzvey+1>1v 2> then a*°, 2 a*",
i Yo, v,v

= "v,v

We are now ready to finish the finish the definition of the sets P, and hence

—

of the set of conditions of the forcing P(F), by defining ultrafilters U™ on
subsets of P}

Definition 4.6. U7 is the ultrafilter on subsets of P defined by

reU)" < s(t)1ve it (z). (1)
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Figure 2: The third component z* of a member of A37. The entry in row «
and column 3 is used in the determination of hq g.

Here s(7)1v is a member of P obtained by restricting s(7) € P} as follows:

s(T)1y = (RST, F57 by, (257)%7, A5 1), (2)
where

1. (257)*7 is a tableau as in Figure Which is obtained from z*7 by deleting
all columns with index larger than v, and retaining only the functions a; .,
from the rows with index v > v, and

—

2. Bty = ({wly |we A7} o <), why = (8,2 1 [,7), A¥),

Definition 4.7. The set P* is the set of quadruples ¢ = (if, F*, 2*, A) satisfy-
ing the following conditions:

1. &', F' and 2! are as specified above.
2. At = (AL [ y0 < v < 7), where AL € UL.

3. fwe AL, and o' <, then

AY = {w' M[y,7) | € AL, & RV < R"

’

Vv (w<v<y<vV<T = a),=a,)}

We remark that clause (3) of Definition is included here only for con-
venience, as omitting it would give an equivalent forcing. In the next subsec-
tion, we will implicitly add more such regularizing conditions when we define
add(s,w), as any w € A%" for which add(s, w) is undefined has no effect.

This completes the definition of the set of conditions for the forcing P(F).
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—

4.2 The partial orders of P(F).

—

Since P(F') is a Prikry type forcing notion, we need to define both a direct
extension order <* and a forcing order <. We will begin by defining the one-
step extension, add(s, w) < s, which which is the basic extension adding a single
new ordinal to the domain of s. We will then define the direct extension <*.
The forcing extension < is then the smallest transitive relation which contains
<* such that add(s,w) < s whenever w € A37 for some 7 € domain(s) and
v <T.

The one-step extension The one-step extension in this forcing is corre-
sponds to the extension in Prikry forcing which simply adds one new ordinal
to the finite sequence. If w € A37 then add(s,w) is the weakest extension
of s which has 7 in its domain; that is, if ¢ < s and v € domain(¢), then
t < add(s,w) < s for some w € A37. The first definition uses the portion of the
tableau of Figure [2| lying above the line to resolve the corresponding functions

a7, of s to Cohen conditions:
:

Definition 4.8. Suppose that w € AS" and 7 > v > v > v = 7; and write

a = ay, and ' = a,. Assume that o’ has same pattern as a[RY, so in

partimﬁ}gr otp(domain(d’ )) = otp(domain(a|&Y)). Then the Cohen condition
fa,r determined by a and o’ is defined as follows:

Let ¢ € domain(a) be arbitrary, let 8 be such that £ is the Sth member of
domain(a), and if § € domain(a|%Y) then let §’ be the fth member of domain(a’).

Then

a' (&) if e domain(am;") and v = 1/,
fa,a (&) = { hy (&) if & € domain(a|RY) and v > v/, (3)
0 if § € domain(a)\ domain(a|kY).

The second case uses the second form of the value of a Cohen condition;
because of the requirement that ai’;, c aS’L,, the ultimate value of h,, ,/(£) can
still be regarded as a Prikry indiscernible for o. This corresponds to Magidor’s
generalization of Prikry forcing in [Mag78].

Now we are ready define the one-step extension s’ = add(s,w).

Definition 4.9. Suppose that w € A37 where 7 = min(domain(s)\y). Then
s’ = add(s,w) is the condition with domain(s’) = domain(s) U {7} defined as
follows:

First, s’} domain(s)\{7,v} = s!domain(s)\{7}; thus, only s'(y) and s'(7)
remain to be defined. As before, let 79 = max(domain(s) n7) + 1, or 79 = 0
if 7 is the least member of domain(s). Fix w = (&%, F%, 2% A%) e A3T. The
value §'(7) is specified by w:

SI(’Y) = (R$7ﬁwvzwr [’YOa’Y]M‘Tw)-

Finally, the definition of s'(7) is by recursion over the pairs (7,7): We set
§'(r) = (¥, F%, 257 A57), where
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1. & = RS and F<'7 = FS7 [y +1,7),

2. 287 is obtained from 27 }(y,7] by setting fﬁ,/f = [y Y faw, using
Definition whenever 7 > v > v = v/ = 9, and

3. If vy <v <7, then
AT ={o(w') |w' e AYT ARY < RY} (4)
where the function o is defined by

o(w)1(v,v] = add(w' (v, v],wtv), and

U(U}I) T(V, T] =w F(Va 7_]'

Clause uses the recursion, and abuses notation by identifying the quadru-
ple w'1(y,v] € P¥* with the condition {(v,w'(y,v])} € P(F* |(v,v]) having
domain {v}.

If any part of the definition of add(s,w) cannot be carried out as described,
then add(s,w) is left undefined. Note that the set of w for which it is defined is a
member of US'7, so that we can assume without loss of generality that add(s, w)
is defined for every w e A37.

The direct extension order. This completes the definition of the one-step
extension, and we complete the definition of the forcing P(F') by defining the
direct extension ordering, <*. This is just the cartesian product of orderings

defined on the sets Py :

Definition 4.10. We will define an order <* on P¥; the order on P(F) is then
defined by

s’ <* s <= domain(s’) = domain(s) A Vv € domain(s) s'(7) <* s(v).
The definition of the order <* on P uses recursion on 7: we assume that
the relation <* on P¥ has been defined for all 7/ < 7. Then for any ¢ =
(R FY 2t AY) and t = (&', F*, 2t At) in P*(7) we say that ¢ <* ¢ if the
following conditions are satisfied.

L S, L
1. & =Rkt and F* = F*.

2. afy/ﬁ, ' domain(a! ) = af _, for efich pair (y,v’) for which they are defined,
and the induced pattern on {a!

the same as that of {a27, |7 >7>7" > }.

(Pdomain(al ) |7 =5 >9" >0} is

3. For each v € [y9,7) and each w’ € Ag there is w € A? such that

() w'M[70,7] <* wilo,7] in Pj.

(b) a}j”ly, 2 ay,, for all pairs (v,1') such that 7 > v > v > v/ > 7, with

the pattern being preserved as in clause above.
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(¢c) For all pairs (v, ') with 7 = v > 1/ = 70, if f' and f are the functions
induced, using Definition by the pair (a! ,,a¥ ,) and the pair

v, Yo’

(at, ,,a. ) respectively, then f = f'} domain(atyw/).

v, Yo
4. f,f:l,, I domain(f! ) = f! , for each pair v,/ for which they are defined.

The clauses and assert that add(s’, w’)(7) <* add(s,w)(7). Clause (3]
adapts the requirement A° < A® from Prikry forcing to deal with he compli-
cation that U™ + Uj/’T: it extends the ordering <* on P to PJ_ and then
asserts that A,SYI’T S{w |[FJwe AST w' <Fwi.

In Gitik’s forcing, this corresponds to his use, in the definition of the direct
order, of a predetermined set of witnesses Tl qs 6O the fact that Uy, , <px Us,
where the ultrafilters U, come from a predetermined sequence of ultrafilters.

—

This completes the definition of the forcing (P(F), <*, <).

—

4.3 Properties of the forcing P(F')

Definition 4.11. If @ is a sequence of length n, then we write add(s, &) for
the condition defined by recursion as add(s,w) = s if n = 0, and add(s, &) =
add(add(s,w!(n —1)),w,—1) if n > 0.

Proposition 4.12. Suppose that s < t. Then there is W such that s <*
add(t,w) <t

Proof. The proposition will follow by induction on | domain(¢)\ domain(s)| once
we show that for any ¢’ and w’ € Atv/ such that s = add(t,w') < t/ <* ¢,
there is some w € Al such that s <* add(t,w) < t. Let w € A be as given
by Clause 3 of the Definition m Then s <* add(t,w), for by Clause 3a,
s(y) <* add(t,w)(7), by clauses 3b,c and 4 we have s(7) <* add(s, w)(r), and
for all 4/ € domain(s")\{r,v} we have t(v") <* s'() = §'(v). O

Proposition 4.13. Suppose t < s and v € domain(t)\ domain(s), and let 7 =
min(domain(s)\y). Then there is w € A3" such that t < add(s,w) < s.

Proof. By Proposition there is a sequence @ so that ¢t <* add(s, @) < s.
Thus it only remains to show that the order of the extension add(s,w) can
be permuted, that is, that there is @’ such that add(s,@) = add(s,w’) and
wp € A37, in which case w = wy satisfies the proposition. This will follow
by an easy induction once we show that the order of two consecutive one-step
extensions can be reversed.

Suppose then that ¢ = add(add(s,w),v), with w € A" adding 7., to the
domain of s, and v then adding v, to the domain of add(s,w). We want to
show that there are w’ and ¢’, adding v, and ~, respectively, so that ¢ =
add(add(s,v"),w’). We can assume that 7, and 7, are not separated by a
member of domain(s), that is, (using the notation from Definition Yo <
Y, Yo < T, for otherwise we have add(add(s,w),v) = add(add(s,v),w).

This is the purpose of including Clause of Definition In the case that
¥ < 4Y, we take w’ as in that clause, and v/ = o(v) where the function o is
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from Clause of the Definition of add(s,w); conversely, in the case that
7 < 7", we take v’ so that v = o(v') and w’ = u € A37 so that w = u'. O

Proposition 4.14. 1. Ifte (P}, <*), then (P}|:, <*) is <i'-closed.
2. The order (P(F),<*) is countably closed.
3. If s € P(F) with v = min(domain(s)) then (P(F)|s, <*) is &*7-closed.
4. If s€ P(F) and ~ € domain(s) with v < ¢ then
P(E)|s = P(F*)|s1y41) ¥ R

where (R, <%) is (2‘P(ﬁw)‘)+—closed.
Here we write P(F)|, for {s' € P(F)|s' <s}.

Proof. Clauses 2 and 3 will follow immediately from Clause 1, and Clause 4
follows from Clause 1 together with Proposition [4.13] The proof of Clause 1
is by induction on length(F): suppose that (w, | v < ) is a <*-descending
sequence of length 6 < %0 in P*(F). We want to show that there is an infinum
wp = /\,—p Wy of this sequence in P* (F). The only problematic element of the

definition of wy is the definition of the sets A;”“’. We set

ve AV = R'>0 & 317=<v,,|u<7>(v=/\v,,
v<6

& Vv <yuv, e A & Vv, V) (V <v <y = w, <Fwy)).

To see that this works, we need to verify that AY? € U for each v < length(F).

But this is the induction hypothesis: we have wy’ = A, _, w¥Y for each v <

length(F). O

The factorization asserted in Clause is a general fact about Prikry-type
forcings in the line of Magidor’s [Mag78]. This, together with the observation
that The forcing R in Clause (4) is the product of P(F }(v, O lstpy+1,¢7 with the
forcing order for adding additional Cohen subsets of cardinals larger than &, is

frequently useful: In order to prove a property of an arbitrary condition s € P (ﬁ)
it is sufficient to prove it for conditions whose domain is a singleton, provided
that it holds of the Cohen forcing and is preserved under finite products.

The next lemma extends Lemma to allow diagonal intersections of
length &!:

Clause will frequently allow us to simplify a proof by considering only
conditions s with domain(s) = {C}: suppose we are trying to prove a property
of s and P(F)|s, and the property is true of R¢-closed forcing and is preserved
under products. If we can show that the property holds for the case domain(s) =
{¢} then it follows by induction that it is true in general: Apply Clause (4] to
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—

write P(F) = P(ﬁS’W)\\sr(7+1) x R. Then by our assumptions the property
holds of R, but by the induction hypothesis it also holds of P(FS’V) Isp(y+1) and
sty + 1, so it follows that it holds of s and P(F)|s.

—

Lemma 4.15. Suppose that s is a condition in P(F'), v < 7 = min(domain(s)),
and that D is a subset of P(F) which is open dense in (P(F),<*) below add(s, w)
for all we A37. Then there is a s’ <* s such that s" € D for all s" < s" with
v € domain(s”).

Proof. By Proposition 4.13 it will be enough to show that there is ' <* s such
that add(s’,w) € D for all w € Afy/”, and by Proposition we can assume
that 7 = sup(domain(s)).

We will construct s’ in two steps. The first step will find sz <* s and
a function o: A37 — P¥ such that add(ss,,o(w)) € D for each w € A7,
with an abuse of notation since o(w) ¢ A5*™". The second step will use the
function ¢ to modify sz to s’ <* s with 457 = {o(w) | w € A2} such that
add(s’, o(w)) = add(sx,,o(w)) for all w e A37.

Enumerate AS7 as {w, | v < £*} so that ' < v implies £y < £, We
will define a <*-decreasing sequence of conditions (s, | ¥ < k) in R, along with
the function o, having the following properties:

S

1. s =s,and 5, = A\ s, if v < RS is a limit ordinal.

v'i<v T
< Su,T _ ST Su,T — S,T Sv T _ 5T
2. Ifn <7 then f," = f,",, and A} Ay, furthermore a,”), = a,’,, for
all n" <.
3. If n > then {’LU I= Af’ll77— | RV < Ewp} c Af]quLT and a;,/;]r/l,‘rp—{w,, _
a, 7 |&"v for all v < K.
4. a;',’(,;ﬁ’”) = a,", for all n and 7’ such that { =7 >~y >’

5. add(sy+1,0(wy)) € D.

Clause implies that U;»™ = U537 for all v < &7, and with Clause (3)
implies that the limits in Clause exist.

To define s,41 and o(w, ), note that add(s,,w,) <* add(s,w, ), and there-
fore the hypothesis implies that there is ¢t <* add(s,,w,) such that ¢t € D. Fix
such a condition ¢, and define

o(wy) v0,7] = ()
J(wu) f(% C] = Wy f(% C]

Extend s, to s,+1 by setting

5 t . t . 5
Pyt = £y iy Homain( 735, )\ domain( £ a37)

AT = AN O {we AT | RY < RV )
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for all n > =, leaving all other components of s, unchanged as required by
clauses f.

Then Clauses and hold automatically, since the elements required
to be held constant do not exist in add(s,,o(w,)). Clause holds since
add(s,+1,0(w,)) = add(t, o(w,)).

This completes the definition of sgzs, and in order to extend it to s’ let

5= [olyec = i (0)(s(r)19). %)

and set
45— ApT for n <~ and
K o[Ay7] for =+, and

’ - 7 —
S, T — S, T S ,T — S, T <
fn,n’ fn’n” and a, ) =a, ", for n < 7.

Then s’ <* s, and if w = o(w') € Af{/’T then add(s’,w) <* add(s,,o(w’)) €
D. O

4.4 The Prikry property

Lemma 4.16. 1. Let ¢ be a sentence and s a condition in P(ﬁ) Then there
is an s’ <* s such that s’ decides .

2. Let D be a dense subset of P(F), and suppose s € P(F). Then there is an
s <* s and a finite b < ¢ + 1 such that any 8" < s with b < domain(s")
is a member of D.

Proof of Lemma[4.16 zIn order to simplify notation, we assume that domain(s)
{¢}. The full result then follows by an induction using Proposition m The
proof is by induction on (: we assume as an induction hypothesis that the
lemma is true of F ¢’ for all ¢! < C.

The main part is the proof of the following claim:

Claim 4.16.1. Suppose that D < P(F) is dense and s € P(F) with domain(s) =
{C}. Then there is s' <* s such that either s’ € D or for some v < ¢
'l pepy Gu e Ai’;/’C) (add(s',w) € GA
add(s',w) (7 + 1) I ppuy (3t € G (£ U (add(s', w) 1C)) € D). (6)
Proof of Claim[].16.1] If there is s’ € D such that s’ <* s then we are done, so

we can assume that there is no such s’. For each v < (, define
DY ={te P(F)|tI- (' € G~ D) domain(t') = (v +1) U {C}}
D ={te P(F) |t —(3t € G n D) domain(t') < (y + 1) U {¢} }
E,={te P(F) |Vt <t((t' € D A domain(t') < (y+ 1) U {¢})
— t'I(v+1) vt} e D)}
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It will be enough to show that for all v < ( the set (Df/r U D;) NnE,is
<*-dense below any condition with domain {v, (}, for if we can do so then by
Lemma there is s’ <* o such that for each v < ¢ and w € Afy/’c, we have
add(s,w) € (D v D7) n E,. By shrinking the sets Ail’c we can assume that
for each v, {add(s’,w) | w e Afyl’C } is contained in one of DI n E, or DI n E,.
Since D is dense it follows that {add(s’,w) | w € Afy/’c} € DI for some v < (,
and it follows by Proposition [£.143) that s’ satisfies the formula (6]).

To see that (D¥ u D;) n E, is <*-dense below any t € P(F) with v €
domain(t), first note that by Proposition [£.14[3), the set E, is <*-dense be-
low any condition ¢ with v € domain(t). Now for any ¢ € E., the induction
hypothesis asserts that there is ¢ <* t}(y + 1) in P(F"7) such that

t' | pepeny Gt € G) 1" U tMy} € D.
Then ¢ U t1{¢} is in either DY or in D7. O

We now apply Claim to complete the proof of Lemma For the
first clause, let D be the set of conditions ¢ such that t || ¢. If there is s <* s
in D then we are done, so by Claim we can assume that there is s’ <* s
and v < ¢ such that for all w e A3

add(s’,w) I (3t € G A D (domain(t) < (v + 1 U {¢}) A t(¢) = add(s’,w)(C)).

By the induction hypothesis, it follows that there is ¢, <* add(s’,w)[(y + 1)
in P(ﬁw) such that t,, u add(s’,w)]{¢} || ¢. By shrinking Ailv( if necessary,
we can assume that ¢ is decided the same way by ¢, U add(s’, w)[{(} for every
w E AZY“’SI. Then s’ <* s decides .

The second clause of Lemma [4.16[is proved similarly, using the given dense
set D. O

—

Corollary 4.17. Suppose that & is a P(F)-name for a subset of A\, v < (, and
s is a condition with v € domain(s) such that A < k5. Then there is s’ <* s

such that s' |- @ € M[{t}v|te G}].

Proof. By Proposition we can factor P(F)|, as P(F M) sty X R. By the
remark following Proposition 4.14] Theorem holds of R, and since (R, <*)

is [A x P(F'7)|sty|-closed the conclusion follows. O

Corollary 4.18. Forcing with P(ﬁ) does not collapse any cardinal A which s

not in the set |, [R3T, R3“).

Proof. Suppose that s is a condition which forces that |A| = X < &,. Then by
Corollary it follows that s[(y + 1) I-p .. [A] = N. Thus we can assume

without loss of generality that A > x = k.. Furthermore, since |P(I:” )| < kTer
we can assume that A < x+1,

Now X € (k,kT%1), so it only remains to show that x* is not collapsed. To
see this, let f be the name of a function f: k — k™.
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For each v < (, let D, be the set of conditions ¢ with v € domain(t) such
whenever £ < Rf/, t' < t, and domain(¢') € domain(t) U (y+1), if there is « such
that ¢/ I~ f(€) = a, then ¢} (y + 1) U t] (7, 6] - f(€) = a. By Lemmathe
sets D, are open and <*-dense below any condition ¢ with v € domain(¢). By
Lemma then, there is s” <* s’ such that add(s”,w) € D, for any v < (.
Then range(f) is contained in {« | 3t < " | t1[7,¢] = s"[7,¢] }, which is a set
in the ground model of size k. O

In the forcing of Gitik from which this forcing is derived, a preliminary forc-
ing is used to define a morass-like structure which guides the main forcing so
as to prevent any collapse. The preliminary forcing is omitted here as unneces-
sary to the present purpose; however as a consequence we do not know whether
the cardinals of Mg in (kT,k%*!) which are excepted in Lemma remain
cardinals in the Chang model. However this is not a significant question with
the present choice of the model M: the cardinals in question can be expected
actual indiscernibles for the Chang model.

4.5 Introducing the equivalence relation

We now proceed to the second part of the definition of the forcing by introducing
a variant of Gitik’s equivalence relation < on P(F'), which is based on the
following equivalence relation on [supp(F)]":

Definition 4.19. Suppose that F is a suitable sequence of extenders of length
at least v+ 1 on a cardinal A, and b,b' < [supp(F,)]*. Then b «<>o V' if otp(b) =
otp(t') and, setting Y = J,,_ supp(F} ), we have bnY =b' nY and F, (Y v
b) = F,Q(Y U V).

If n > 0 then we say b <>, 1 b’ if for all ¢ 2 b in [supp(F,)]* there is ¢/ 2 ¥/
in [supp(F,)]* such that ¢ <, ¢, and for all ¢ 2 b’ there is ¢ 2 b such that

c o, C.

Definition 4.20. We write N for the set of sequences 7 € Sw such that {. <
¢ | n, <m} is finite for each m € w.

If @ and @ are arrays of Prikry functions as in Tableau [1| and 7 € N, then
we say @ <5 @ if the patterns of @ and @’ are the same, and range(ay4+1,4) <n
range(a’ ) for all v such that these functions appear in the tableau.

YLy
We say that @ < a’ if @ <5 @ for some 77 € N.

~

Note that a1, together with the pattern of @, determines the rest of the
column {a, , | T=v > 7).

Definition 4.21. The extension of the relation «<>7 to members of P} and P,

is by recursion on 7. Assume that <5 has already been defined on P;;‘ i and
P,’Y", for all 4/ <. For w,w’ € P} we say

woqw = (wr[%m] <nw'llon & Vu>n=u)ay, = a?ﬁu') )
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where w [0, 7] and w'[[o,7] are being compared as members of P*.
For t,t' € P, we say t < t' if and only if the following four conditions are
satisfied:

1. 7t =&, Ft = F.

2. ft = flf:l,, for all v, for which they are defined.
3. @ —p
4 {[w]o, |lwe AL} = {[w]o, [we AL } for all n < 7.

Finally, if s, ' € P(F) then s < s’ if domain(s) = domain(s’) and s(y) <5
s'(7) for all 7 in the common domain.
In all cases we say that <> holds if there is some 7 € A/ such that «<>; holds.

It is easy to see that <> is an equivalence relation. As was pointed out earlier,
its purpose is to disassociate the Prikry indiscernible h, ,/(§) = fq.q(§) from
any particular choice of the ordinal a(€) for which it is an indiscernible.

Proposition 4.22. Suppose that s < s, w e A7, w' € A,SY/’T and w — w'.

Then f;i‘%(s’w)ﬁ = fs(if,l(s,’wl)ﬁ for all T € domain(s) and v <1 <n < 7.

Proof. This is immediate from the definition except in the case that n > v > 7'
If = ~ then it follows from the requirement if Definition hat ap = aﬁfn,.
For 1/ < ~ also relies on the fact that fo o/ (§) = hy,,y(£'), using the second form
of equation , and hence depends only on the domain of afy":n,, not (explicitly)
on its value. O

Proposition 4.23. Suppose that add(s, 2) < s <>z t. Then there is W such that
add(s, 2) <7 add(¢t, @) < t.

Proof. We show that this is true when z has length one. An induction will then
show that it is true in general. Thus suppose that z € A57 and add(s,2) <
s <>z t. By Definition 4.21 there is w € AL7 such that z <5 w. Then
add(t,w)(v) = wl[y0,7] < z1[10,7] = add(s,z)(7); and Proposition [£.22]
implies that add(¢, w)(r) <7 add(s, 2)(7).

Since these are the only values of s and ¢ which are changed, it follows that
add(s, z) <7 add(t, w). O

Proposition 4.24. Suppose s’ <* s <5 t, and that n, > 0 for all v ¢
domain(s). Then there is t' <* t such that s’ <z t', where m, = n, — 1
if n, > 0, and m, = 0 otherwise,

Proof. We will prove that the lemma is true for s’,s and t in P,;“ with the
assumption that n, > 0 for all v in the interval vy < v < +; this will imply that
it is true for s’, s and ¢ in P(ﬁ) The proof is by induction on 7.

By the definition of <* and < all of &, s,t’ and ¢t must agree on their values

of & and F, and f* must be equal to f*. This leaves the functions af//,,l, and
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sets Af,/ to be defined. To define a@* pick for each v in the interval 79 < v < v
some b 2 atu’llﬂ, such that a; 4, <>m, b. This is possible by the definition of

<, +1. Now set af,/ﬂ’y = b and define aty/,yu for v = v/ > v+ 1 by applying the
pattern of <af,l,’l, |y=v >v).
Finally, set

’ ’
AL ={w' |Fwe AL w' <Fw & I e AS W om0 )

To see that A% = A% observe that s’ <* s implies that for all v/ € AS there
is v € A% such that v' <* v. Then s <>; ¢ implies that there is w in A! such
that w <5 w’, and the induction hypothesis implies that there is w’ <* w with

w5 v O

Definition 4.25. We write [s] for [s]. = {t | s «& t}. The ordering on
P(F)/< is the least transitive relation such that [s] < [¢t] whenever s < t or
s o t.

Proposition 4.26. Suppose [t] = [s] and t' < t. Then there are s" < s and
t" <t such that [s"] = [t"].

Proof. Suppose that ¢ <5 s. By using a further extension ¢’ = add(t', @) we
can arrange that {v | n, = 0} € domain(¢”). By Proposition there is Z'so
that ¢ <* add(t,2) < t. By Proposition it follows that there is W so that
add(t, 2) <7 add(s,w) < s. Finally it follows by Proposition that there is
s" <* add(s, @) so that s” < t". O

Proposition 4.27. Suppose that [t] < [s]. Then there is a condition q¢ < s
such that [q] < [t].

Proof. If [t] < [s] then there is a sequence ({1, ...,ta, » as in the first row of
the following equation:

t<ti ——tlo<tz3¢> - <>ty, =8
L/‘/ L/‘/ (7)

We prove the proposition by induction on n. If n = 0 then ¢t = s, so we can
assume that n > 0. Then the induction hypothesis asserts that there is ¢’ as
shown in diagram , and then Proposition implies that there is ¢ as in
diagram @ O

Corollary 4.28. P(F) is forcing equivalent to (P(F)/<) * R where R is a
P(F)/—-name for a partial order. O

Corollary 4.29. Forcing with P(ﬁ)/<—> does not collapse any cardinal which is

not in the set | ), [RIT,RI<).

y<¢UMy

Proof. By Corollary this is true in the extension by P(F) = (P(F)/<)* R;
hence it is certainly true in the extension by P(F)/<>. O
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4.6 Constructing a generic set

Much of the argument in this subsection is basically the same as Carmi Me-
rimovich’s first genericity construction in [MerQ7, Theorem 5.1]. In order to
construct a Mp-generic set we need to move outside of Mp: we work in V[h],
where h is a generic collapse of R onto w; so that |M[h]| = w{w[h] = wy. Since
this Levy collapse does not add countable sequences of ordinals, the Chang
model is unchanged, the ordering <* of P(]\7 I¢) is still countably complete,
and M is still closed under countable sequences.

Before continuing, it may be useful to look briefly at the relation between
CMslG] and the actual Chang model. Since Mp is not transitive, the fact
that Mp|Q < V does not immediately imply that C*5 [&] is isomorphic to a
submodel of C. The ultimate conclusion will be that this is true, but the proof
will be in the following Section as part of the proof of the Main Lemma [3.11
The only case in which this isomorphism is immediately clear, given the result
in this section asserting that Mp[G]|2 contains all of its countable subsets, is
the case B = B(0) = (ko | @ < ¢ ): in this case Mp[G]|Q? is transitive and it
follows that CM2IG1 = C, . Tt is also easy to see that if B and B’ have the
same order type, then CM5lCG] ~ CMpr[¢'] If B is suitable, then the definition
of Cp essentially says that it is equal to CM5IC]; however it is not immediately
clear what relationship CM&[G] may have to the Chang model itself. In the case
that B is limit suitable, it is not even immediately clear that Cp is definable in
Mg[G].

The main result of the current section is the following lemma:

Lemma 4.30. Let h be a generic collapse of R onto wy with countable con-
ditions, and let B be a countable subset of I with otp(B) = (. Then there is,
in V[h], an iq(Mp)-generic set G < iq(P(N1¢)/<) such that every count-
able subset of Mp is contained in Mp|G]. Therefore, if B is suitable then
(CMB[G] =Cgp.

Proof. We define a partial order R. Our assumptions on M are sufficiently
generous that the definition of R can be made inside M, using ( Ne n HM | £ <
wy », for some sufficiently large cardinal 7 of M, instead of ( N¢ | £ < wy ).

Definition 4.31. R = U€<w1 Re, where R is defined as follows: The mem-

—

bers of R¢ are the pairs ([s],b) such that [s] € P(E'1d)/« is a condition with
domain(s) = {¢} and b = (b, : v < () where each b, is a function in N
satisfying the following three conditions:

5,¢

1. domain(by) = domain(a;;; .,

) for each v < ¢,

2. range(b,) < [k, kT*1) for each v < ¢, and

3. {aj$y, |7 < ¢ b
The ordering of R is (s',V/) < (s,b) if [s'] < [s] in P(E1()/«> and v, 2 by for
all v < (.
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Clause requires some further discussion, since b ¢ N,. The following
definition gives a representation of the «<>,-equivalence class of a which makes
sense in this context.

Definition 4.32. Fix v < w; and write S = (., supp(Ey/). The the func-
tions ¢, for n € w are defined as follows:

1. If a € [supp(E)]" then ¢, o(a) = { (B,2) € S x P(Vi) |z € Eg,q) }-

2. tyn+1(a) is the set of triples (§,y,X) such that y € £ < ™ and for
some ¢’ = {a, | ¢t < &} < supp(E) such that a = {«, | L € y} we have
tyn(a) =X.

Proposition 4.33. 1. Ifa e [supp(E,)" and vy < & < wy then (t,(a))Nr =

(t%n(a>)N§ = (t%n(a))M
2. If a,d’ € [supp(E,)]" then a <, a' if and only if ., ,(a) =ty (a).

3. If a € [supp(E,)]", tynt1(a) = tyni1(b) and b < b € [supp(E)]" then
there is @’ such that a € a' € [supp(E,)]" and ty,(a') =ty (). O

Lemma 4.34. 1. {([s],b) | s € D} is dense in R for each <*-dense set
D < P(EC) in M.

2. Suppose v <  and n € [k, kT*"), and define b, by applying the pattern
of az-f, to b,. Then {([s],b) | (n € range(b¢,)) } is dense in R.

Proof. To see that {([s],b) | s € D} is dense in R whenever D < P(N () is
<*-dense, let ([s],b) € R be arbitrary. Let a = <afy’f_17,y | v < ¢). We may
assume that a, <1 b, for each v < (; if not, then replace a, with some afy
such that a'7 < ay and aQ/ <1 b,. This is possible by the elementarity of the
structures Vg, since b, has the desired properties. This change only involves
finitely many of the functions a., so the condition obtained from s by making
this substitution is still in [s].

Now pick s’ <* s in D. Because of the assumption we made on @, there is
V < a*¢ such that ([s'],) < ([s],b).

The proof of clause 2 is similar. Fix ([s],b) € R, making the same assumption
on s as before. Now fix § so that {b,n} € N¢ and and extend b to b’ € N¢ by
setting b/, () = n where « is chosen large enough so that it is not in the domain
of any function in s. Then there is @ D @ so that @’ < b'. Now extend s to &/,
choosing the pattern of <afy,7’,§ | ¢ = v > v) by including « in domain(aif) for
all v. Then a € domain(b¢ ) and hence 1 € range(bc ).

The ordering (P(N)/<,<*) is not countably complete: it is easy to find
an infinite descending sequence of conditions {([s,] | n < w) such that any
lower bound would require an ultrafilter concentrating on non-well founded sets
of ordinals. However the partial order R is countably complete due to the
guidance of the second coordinate b:
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Lemma 4.35. The partial order R is countably closed.

Proof. Suppose that {([sn],bn) | n < w) is a descending sequence in R. We
define a lower bound ([s.], b,,) for this sequence. The definition of R determines
by = U<y bnovs and determines all of s,, except for the functions aff;’fv and
sets AS:C.

Let us write a,,,, for aij’r’iy. The domain and pattern of d,, , is immediately
determined: domain(ay,,) = domain(b, ) = |, domain(ay ), and the pat-
tern of @, is determined by the requirement that the pattern of a,, ,, | domain(ay,
is the same as the pattern of a,, .. Pick any i = (n, | v < ()€ N, and for each
v < ( pick a,,, € N, so that

buw

v )

Ay, | domain(ay, ) <, , Gny and  ag,, <

where k, , € N is chosen so that a, ., <, ,
tion [4.33] since by, satisfies these conditions.

Now define the sets A%~¢ as in the proof of Proposition Then ([sy,], b.) €
R and ([sw],bw) < ([$n], bn) for each n € w. O

by, This is possible by Proposi-

We are now ready to construct the Mp-generic subset G € iq(P(E [()/<),
where ¢ = otp(B). To slightly simplify the notation, we will assume that
B = B(() = { Ky | ¥ < ¢}, so that the constructed generic set will have &, = k..
For an arbitrary set B there is an isomorphism mp(¢) p: Mp) = Mg, so that
if Gp(¢) is the constructed Mp(¢)-generic set then Gp = Tp(¢),B[GB(¢)] Will be
the required M g-generic set.

Definition 4.36. To construct the set G < iq(P(E[¢)/<), first construct a M-
generic set H R in V[h]. This is possible by Lemma since |[M|VIM = w,
and and “M < M. Now for each ([s],b) € H and each finite increasing sequence
{7i|i<n) of ordinals v; < ¢, define a sequence (s, 7) by setting

W(s,7) = (iy,(w;) |t <n), where
wi = (K‘7 E_"r[’yi—h 77,)’ repl(zs,C r[%'—la ’yz)a a’yi-ﬁ-l,vivb’w)? A'r[’)/l—lv’}/z)) . (8)

Here we take y_; = —1, and we write repl(z, ay+1,,by) for the tableau which
is identical to z except that a7, . is replaced by by, and hence each entry aj .,
in the column above aZ ,, ., is replaced by b, [ domain(a} ). Finally, set

G ={s"| (([s],b) € H) 37 add(ia(s),d(s,7)) < 5"} (9)

Note that the effect of the replacement used in equation is that a con-
dition add(iq(s),w) € G forces that h¢.,(ia(§)) = i, (b,(§)) for each & €
domain(aé:i). By Proposition it follows that every generator of Mp will
be given a name of this form.

Our verification that G behaves as expected relies on a system of standard
names for members of M and CM5IG]. Note that we use standard forcing
names even for members of Mp.
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Definition 4.37. A standard forcing name for a generator 5 of Mp is a term
he o (ia(€)) where v € B, € € [k, 51)M and hg,y(f) = (. This name is established

by a condition ([s],b) € R if 5 = i,(b(§)) and £ € domain(a Cg)

We extend this terminology to members of Mp and members of C: a stan-
dard forcing name for x € Mp is a term of the form m(f)(ﬁ) where ﬁ is repre-
sented by a finite sequence of standard forcing names, and a standard name for
a set in C is one of the form {z € Ci. | C, = ¢(z,7) } where ¢ is represented by
a standard forcing name and 7 is represented by a countable sequence of such
names.

Claim 4.37.1. G is an Mp-generic subset of P(ig(E1¢)).

Proof. The requirement that <a2§y | v < ¢) < bimplies that w;(5,7) € in(A5°)
and therefore add (s, @W(s, 7)) < iq(s), and it is straightforward to verify that the
members of G are compatible.

To verify that G is generic, let D be an arbitrary Mp-generic subset of
io(P(E1¢)/<>). Then D = i(d)(B) for a function d € M and sequence 5 = ( §; |
i < n) of generators, say 3; = i-,(3;). Thus there is a standard forcing name
i(d)((heyy (iq, (&) ) for D. Let ([s],b) € H be a condition establishing this
name.

Since D is dense in iq(P(E¢)/<),

A={7|d() isa densesubset of P(E[(/<)}e H Eg,
i<n

SO We may assume that Ac L, A5

Let D' = P(E(/<) be the set of conditions [t] such that [¢] I [¢] €
d((he~ (&) | 4 < m)). This is dense below [s], since [s] I- d({he, (&) |
i < n)) is dense. Then by Lemma [L.16|{2), there is an s’ <* s and a finite
¢ € ¢ such that any ¢t < s’ with ¢ € domain(¢) is in D’, and it follows that
add (i(s"),w(s’,cu¥)) e D nG. O

Claim 4.37.2. The model Mp[G]|Q? contains all countable sequences of its
ordinals.

Proof. It is sufficient to show that every countable sequence of gen erators of
Mp is in Mp[G]. Thus let 8 = (i, (8;) | i € w> By Proposition 4.3 1.) there
is a condition ([s],b) € H and a sequence ¢ with by, (&) = Bi for each i € w.
Then 8 = (he 4, (&) | i€ w) e Mp[G]. O

This completes the proof of Lemma [£.30} O

Before turning to the next section, which generalizes the construction of this
section in order to prove Main Lemma [3.11} we make two observations. The
first asserts that, although P(F ) differs from Prikry forcing in that conditions
in the forcing have incompatible <*-extensions, such extensions cannot force
incompatible information about the Chang model.
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Corollary 4.38. Suppose ¢ is a formula and that all parameters of ¢ are given
by standard forcing names which are established by the condition ([s],b) € R.
Then the following are equivalent: (i) Cp(¢) = @, (ii) There is s’ <* s such that

i0(5]) oo (8 10)en) @ and (i) ([s1,8) I CVE@10) o,

Proof. When G is constructed as in the proof of Lemma[4.30] Clause (i) holds if
and only if CM5LC] = . The construction can begin by choosing any condition
as a member of H, so this is equivalent to Clause (fiii]) since if Clause is false
then there is ([s],¥) < ([s],b) which forces CM2[G] = —¢. Finally, Clause
is equivalent since by Lemma there is ' <* s which decides the question,
and as with Clause it can only be decided one way. O

Clause (fil) uses the sequence B(() instead of allowing an arbitrary B because
the other two clauses are talking about facts which are internal to Mp (or,
perhaps better, internal to Mp[G]) in the sense that they do not take any
account of gaps in B.

The second observation is that, for limit suitable sequences B, the model
Cp is definable in the model Mp[G] constructed in Lemma [4.30]

Lemma 4.39. Suppose that B is a limit suitable sequence and G is the set
constructed above, and let B° be the set of heads of gaps of B. Then Cpg is a
submodel of Mp[G], definable in Mp[G] using the parameters G, B and B°.

Proof. By Definition [3.10, Cp is equal to the set constructed by recursion over
the set of ordinals of Mp|f2, using as parameters for the successor step the set
D ={[Qn Mg]*| B< B & B is suitable }. Thus we need to verify that D
is definable in the indicated parameters. Now any member of D may be written
as in the form (ig (fn)(ﬁn) | n € w) where Bn is a finite sequence of generators
in B for some suitable B < B. If we write B = { 8,,, | m € w ) for Unew f,, then
each f,, is a generator for some &, so that { &, |mew} < B. There will be
a sequence & € Mp so that in Mp [G], Ym = h¢ v, (§m); furthermore 7 satisfies,
in Mp[G], the condition

VA e B°sup(¥ n A) < A (10)

Thus it will be sufficient to show that for any sequences & € [, QT)]* n Mg
and ¥ € [B]* satisfying the condition (10, the sequence {h¢ ,,, (&) | m € w)
isin D.

Now since E € Mp, there is a function f € M and a finite sequence ji of
generators such that 5 = i(f)(f). Since [ is finite, we can assume, by expanding
B if necessary, that iZ and hence E is in M 5. Now let [s] € G be a condition
with &, € domain(azg )u domain(fg,’gm) for all m € w. This partitions w into
three subsets:

Ag={mew|&, € domain(ag’i )}

A1={m€w|§medomain(fcﬁm) fC%(m)eQ}
Ay = {mew|&, edomain(fZ ) & f&5 (&m) has the form hoy -, (€),).}
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The set (h¢ 5, (&m) | m € Ag) is clearly in D, and (he .y, (€m) | m € Ar)
is a member of Mz and hence is in D. Now for m € Ay we have fggm =
Pyt (&) s a formal expression. For those m such that &, ¢ [k , R;r;n)
have h¢ ., (§m) = 0 by definition, and since (&, | m € Mp ), the genericity of
G ensures that {me A2 | £, € [E’Yin’k%z) } is finite. O

we

4.7 Proof of the Main Lemma

The purpose of this subsection is to prove Lemma with the simplifying
assumption that k = kg is a member of the limit suitable set B. The following
Subsection will show how to remove this assumption, in the process giving
the technique for proving the stronger result Theorem [3.6

Before beginning the proof, we state two general facts about iterated ultra-
powers. Both are well known facts, but we need to verify that they are valid in
the context in which they will be used.

Lemma 4.40. Suppose k' < k, E' is an extender on k', and E is an extender
on k such that [n]® < UL(V, E) for all n < length(E). Suppose further that if
K =k then E' < E, and if K’ < k then length(E') < k. Then the ultrapowers
by E and E' commute, that is, iiEl(E) 0if = iF 0B,
Proof. This is a standard result in the case that E and E’ are both ultrafilters:
if k¥ < k then each of the iterated ultrapowers is given by a single ultrapower
by E’ x E generated by the sets X < x which contain a rectangle A x B with
A € E' and B € E. Here, for i¥ o if X, = {Bekr]| (a,p) € X} then
A={aer'|ByeE}and B =\, Ba, while for it” (#) 0iZ A'is such that
B={a|k|A={p](a,B)} € X} e E. For the case k' = &, the rectangle
A x B is replaced with a triangle { (o, 8) | @« < k A 8 < gx(8) } where g, is a
function such that k = [gx]&.

Now for extenders E and E’, we write E, for the ultrafilter {z € k | a €
i¥(x)}. Then

UlL(UIL(V, B), E') = dirlim  Ult(Ult(V, E,), Ew)
aesupp(E)
a’esupp(E’)

and hence can be mapped into Ult(Ult(V, E’),i" (E)) by
UI(UI(V, E), ) = Ule (UI(V, Bl ), i (F) 4, (a)) (11)
< dirlim  ULt(UL(V, E.,,i% (E),)) (12)

3
a’esupp(E’) @
aesupp(iE’ (E))

= Ult(ULL(V, E'),i% (E)).

It remains to verify that the map is onto. This is immediate, except that
in line the only subscripts included for i« (E) are elements in the range
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of i¥', where as in line (12) any a € supp(i® (E)) is allowed. Now fix any
such a, and let g, be such that a = [g.] o, (enlarging o/, if necessary). Then
Ul (ULL(V, B, i (E)a)) < ULt UL(V, E,),i¥ (E), e . ), which is an instance of

the right side of line (TI]). O

The extender used in this proof do not quite satisfy the hypothesis of Lemma[4.40]
as stated, as they are not closed in w; sequences cofinal in supp(F). However
all the ultrapowers involved are wo-complete, so the iteration maps are all con-
tinuous there, and so the conclusion applies. In the sequel, whenever we refer
to an iterated ultrapower we will mean one by extenders to which Lemma
applies.

Corollary 4.41. Any iterated ultrapower of a model M of set theory is equal
to an iterated ultrapower obtained by reordering the extenders used so that the
critical points are strictly increasing.

Proof. Since the iterated ultrapowers are the direct limits of the finite subit-
erations, it is enough to show this for finite iterated ultrapowers, but this is a
simple induction from Lemma O

Corollary 4.42. Suppose that M Ko, My and M F, M are iterated ultrapow-
ers, with every extenders used in ko having critical point less than that of k1,
and with length(ky) < crit(ko). Then ko(k1)(v) = k1(v) for every ordinal v.

Proof. Set r equal to the smallest critical point of an extender in k; and set §
equal to the supremum of these critical points. Then we can regard k; as given
by a single extender on the power set of §, with supp(k1) = g i, &, Supp(E)
and having all constituent ultrafilters x-complete.

Define the extender E by E, = {x S § | a € k1(x) } for a € supp(k1). We will
show that for every g: 6 — Q in M and a € supp(k1) there is g in My such that
{v|gWw) =glki(v))} € E,. This will give an order preserving mapping from
the ordinals of Ult(M, k1) into those of Ult(Mpy, ko(k1)), proving the Corollary.

Given g, for each v < ¢ choose (g,,b,) with b, € supp(ko) so that v =
ko(g,)(b,). Define gg(v) = ¢.(8). By the k-completeness of E,, there is b so
that B = {f e d | bg=0b} e E,. Set g = ko((gs | S < A))(b). Then for
all v € B, we have g(ko(v)) = ko((gs | B < A\)B)(ko(0)) = kol{ga(v) | 8 <
A(b) = g(v). O

The next Corollary is a slight generalization of a classic result of Kunen
[Kun'1]:

Corollary 4.43. For each ordinal « there is a finite set d,, of reqular cardinals
such that k(a) = « for any iterated ultrapower k such that (i) k(dy)[ds is the
identity, (ii) the set of critical points of extend ers in k is bounded in «, and
(iii) if k is factored k = ki o ko, where all extenders in ki have critical points
greater than any critical point of any extender in ko, then there is kj so that

ki1 = ko(ky).
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Furthermore, this remains true for k in a generic extention, provided that
if k: V2 Ny S Ny is any factorization of k then ko(k1) is in a generic
extension of Ni.

Proof. The sets d, are defined by recursion on a: we assume that the set d
has been defined and satisfy the conclusion for all o/ < « and will use this to
define d,,.

Say that a pair (d,d) fizes o if (i) d is a finite set of cardinals, (i) § € a,
(iii) the conclusion of Corollaryis true with d, replaced with dué. Clearly
the pair ({cf(a), o} fixes a; we want to show that there is d so that (d,0) fixes
a. Let § be least such that there is d such that (d,0) fixes . We will assume
that § > 0 and reach a contradiction.

Claim 4.43.1. Suppose that 6’ < 6 and the iteration k is a witness that (d,d")
does not fix a. Then the initial segment ko of k with critical points below § also
is such a witness.

Proof of Claim. Write k = kq o kg, with k: V Fo, Ny F, Ni. The requirement
in the hypothesis that k; = ko(k}) implies that k1 € Ny, and by elementarity
Ny satisfies that (ko(d), ko(9)) fixes ko(a), but ki(ko(d)) = k(d) = d, and the
critical points of ki are all above §, so k1(ko(a)) = ko(a). Since k(a) > a, it
follows that ko(a) > . O

Claim 4.43.2. There is d such that for any witness k that (d,0") does not fix
«, there is an initial segment ko of k with critical points bounded in & which also
is such a witness.

Proof of Claim. Since the Claim is immediate if § = «, we can assume that ds
is defined. We can also assume that « is not a regular cardinal, as in that case
we could take do, = {a}. Let d 2 {cf(a),cf(0)} U de(ay U ds so that d, = d
for all v € d. Since cf(a) € d, the embedding k is continuous at «; thus there
is some o’ < o such that k(o) > a. Set § = max(6 N dor U Uyeq,, o, dv)-
Then k(&) < ¢, since the choice of d implies that k(J) = 0. Let ko be the initial
segment of k with critical points below k(§) and factor k = kq o kg. As in the

proof of Claim 4.43.1} k;(ko(a')) = ko(a’) and hence ko(a') = k(c/) > a. O

Now we are ready to conclude the proof. Fix ko: V — My. Set & = sup(di?),
which is defined because a < kg(«). I claim that ¢’ = £ works. Otherwise let
k1: V — M have all critical points in the interval [¢, &) for some &' < d be such
that k1(a) > a. Then by Corollary ko(k1)(a) = k1(a) > a, contradicting
the fact that ko(k1)[dMo is the identity.

To see why the “furthermore” clause of the Corollary is true, note that a
critical point was that “there is a witness that (d,d) does not fix a” is a first
order statement. O
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We are now ready to continue with the proof of Lemma As was stated
earlier, the argument uses an induction on the lexicographic ordering of pairs
(¢,¢) to prove that for all limit suitable sequences B and all x in C, n Cp,

Cgp MZCL o(x) if and only if IE o(x). (13)

Here and for the remainder of the paper, if P is a model of set theory then we
write P |= o to mean that (CH)F Eo.

The statement implicitly uses the induction hypothesis by assuming that
Cp < C. This is not literally true; however the induction hypothesis implies
that Cp is isomorphic to a submodel of C, by the map defined recursively by
taking a set {y € C, | C, = ¢(y,a) }*® € (C,)°? to the set having the same
definition in C. For the rest of this section we will identify these two sets.

We will need an additional induction hypothesis in order to carry out the
proof. Because it is rather technical and uses notation which will be developed
during the proof of the induction step for Lemma [B.11] we defer its statement,
as Lemma until it is needed to complete that proof.

By standard arguments, the only problematic part of the proof of the in-
duction step for Lemma [3.11] is the assertion that the existential quantifier is
preserved downwards: We assume that ¥(x,y) is a formula which satisfies ,
and want to prove that

Vo e Cp (k Wv(ry) = Cplg Fyi(z,y)). (14)

Since the basic problem in the proof is dealing with gaps in B, it will be
useful to introduce some notation for them. A gap of B is a maximal nonempty
interval of I\ B. Each gap in a limit suitable set B is a half open interval [0, §) N1,
where o is the supremum of an w-sequence of members of B, and § is either
min(B\o) or Q. In either case we will call ¢ the head of the gap and the final
w-sequence of B N §, excluding the limit point, the tail. We will also refer to
any terminal subsequence of it as a tail. Note that if &' = sup(({0} U I) N o\B)
then the half open interval I n[¢’, o) is contained in B. We will call this a block
of B.

Recall that if B is limit suitable then Cpg is is defined to be the union
over all suitable subsequences Bc BofC 5- We will concentrate on suitable
subsequences B which are maximal in the sense that (i) every head § of a gap
of B is in B (and therefore is also the head of a gap of B), (ii) these are the
only gaps of B, and (iii) if § is the head of a gap of B then max(B n §) is a
member of the tail of that gap in B. Call a set b B a tail traverse of B if
it contains exactly one point of the tail of each gap of B. If we write D for the
set of heads of gaps of B, then every tail traversal b corresponds to a maximal
suitable subset B = B\|J{[\,0) |6e D & A =max(Bné)} =J{[0',\) ]| €
{0} UD\{Q} & X = min(b\&") }; conversely, if B is a maximal suitable subset
then b = {min(6 n B\B) | § € D} is a tail traversal. This divides each block
B < [¢,6) of B into three parts: the initial segment [¢,0) N B = [§,)\) n T,
the singleton {A} = b [¢’,6), and the tail B n (A, §) of this block above A.
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Now suppose that ¢(z) is the formula Jy 1 (z,y) and is true in C,, and that
B is a limit suitable sequence with x € Cp. Fix a tail traversal b of B such that
{x,1} € Cp, where B is the suitable subsequence of B determined by b. Pick y
SO %L Y(x,y) and let B" © B be a limit suitable sequence with y € Cp:. By the
induction hypothesis Cp' = ¥(z,y).

We will define an iteration map k and an isomorphism o as in Diagram .

Mp: > Mp: 1]
/ I Ecr (15)
9 k .
M MB S Mp M, > M, rﬂ

Here the wavy arrow, ~~, is used to indicate an isomorphism.

The map k will be an iterated ultrapower, definable in Mpg[c] from a count-
able sequence ¢ € Mp of ordinals. The indiscernibles added by this iteration
will be used for two distinct purposes: The first is to provide targets onto which
o can map members of B\ B, and the second is to emulate the gaps of B’\B by
adding blocks of indiscernibles of order type ws.

The map o must also be defined on generators belonging to members of
B\B. Since the extenders used in k will be members of Mp, they cannot
provide enough generators to accomodate all of those in Mp,. Thus a submodel
Mp/ 17 of Mp, will be used which can be accommodated in My, but is large
enough that Mz u {y} < Mp 7. Corollary will be used to ensure that the
restrictions of k and o to ordinals in the suitable submodel Mz are the identity.

Since the iteration k can be defined in Mp[c], and thus in the generic exten-
sion of Mp described in Subsection @ the models Mg and M} have the same
ordinals and the same associated Chang model Cg = Cg. Thus Diagram
induces the following diagram:

(CB/ > (CB' fﬁ
/ ] éa (16)
k R
Cs© Cgp Cr =Cp «——Cy 17

With this machinery in place, we will be able to quickly complete the proof: we
are assuming )@:CL ¥(x,y), so by the induction hypothesis Cp: ’E Y(x,y). Aneasy
proof will give Lemma stating that Cg/ |77 < Cp, so Cp/ 1] 'E, Jyh(z,y).
Fix y € Cp/ 17 so that Cp |7 )E ¥(z,y). Since ¢ is an isomorphism, it follows

that Cy 17 iz ¢(z, 0 (y))-

The proof will be completed by showing that this implies C, = Cp
¥(x,0(y)), but this step is more difficult than the step using Lemmafor the
upper level of the diagram. This argument uses the additional induction hypoth-
esis alluded to earlier: Lemma is a slightly generalized form of the needed
fact which will conclude the proof of the induction step for Lemma[3.11] Finally,
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the full induction hypothesis, including the just proved fact that Lemma
holds for (1, ), will be used to prove that Lemma [4.49] also holds for (1, );
this will complete the proof of Lemmas [3.11) and |4.49} and thus (except for the
assumption that kg € B) of Theorem i

We now give the details of the construction of Diagram (15). The four
models on the left of the diagram have already been defined: B is the given
limit suitable sequence, B < B is a suitable subsequence with x € Mg which is
characterized by a tail traversal b of B, and B’ 2 B is a limit suitable sequence
with a witness y to Jyu¥(x,y). The following definition is more general than
needed here. The added generality will be used in the proof of Lemma [4.49

Definition 4.44. A wvirtual gap construction sequence for B is a triple (b, 7, g)
satisfying the following conditions: (i) b is a tail traversal of B, (ii) 7 is a
sequence of countable ordinals with domain of the form { (A, &) | A e bA & < vy }
for countable ordinals vy, (iii) g is a set of pairs (A, §) € domain(77) with £ a limit
ordinal, and finally (iv) nx¢ > otp({z € B u domain(n) | z < (A, §) }, where
(B v domain(n)) is the extension of the lexicographic order < on domain(7) to
B u domain(7) defined by setting A < (A, £) < A whenever (), €) € domain(n)
and N € Bn .

Definition 4.45. We will say that (b, 7, g) is a virtual gap construction sequence
for B’ over B if (i) B’ and B are limit suitable sequences with B’ > B, (ii) B’
has the same order type as (B u domain(n), <), and, letting 7 be the order
isomorphism, there is a tail traversal b of B, and a tail traversal &’ of those
gaps in B’ which are also in B, such that if B < B is the associated suitable
subsequence then (iii) 7 [B is the identity, and 7 maps b’ to b and the tail above
each M € b to the tail above 7(\) € b, and furthermore, (iv) g = {7(v) |
~v is the head of a gap in B'\B}.

The virtual gap construction sequence (b,7,g) for B’ over B which will be
used for the construction of Diagram is represented in Figure [3|by the points
in M}, and the dotted lines connecting Mp: and M}, in that figure correspond to
the map 7. These are defined individually for each gap of B: Let [u,d) be a gap
of B and [¢’, 1) the corresponding block. In the case B’ n [¢’,8) = B n [¢,6),
then 7B’ n [¢,6) is the identity, b n [¢',1)] = b~ [¢', 1), and there are no
members of domain(g) in the interval [¢', ) <.

Now assume that y' = sup(B’ nJ) > u. Write A for the member of b in
[6’,8) and pick any member of the tail in B’ of this gap as a member of ¥’. In
accordance with clauses and of Definition vy = otp([\, X)) n BY)
and g is the set of 7(y) such that + is the head of a gap in B’ n (A, X). The
function 77 is a constant function, with the constant value 7 chosen so that
(i) n = w¥ - otp(B’) and (ii) y € Mp/ |7, which is the submodel of Mg defined
as follows:

Definition 4.46. If (b,7,g) is a virtual gap construction sequence for B’ over
B, then Mp/ 1] = {ja(f)(a) | f € M A a € [G]=*} where G is the following
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set of generators: Let x, be a member of B’ and let 8 = i,(8) be a generator
belonging to x,. Then

BeG « (7(ky) € Bv (T(ky) = (A &) € domain(i]) A B € supp(Ey, .)))-

Note that Mg < Mp 7 < Mp:, and Mg = Un<n+ Mp/ 11, so y € Mp: 1]
for sufficiently large 7.

Lemma 4.47. If (b,nx¢,9) is a virtual gap construction sequence for B’ over
B then (CB/ rﬁ< (CB/,

Proof. A slight modification of the construction from Subsection yields a
Mp: Mij-generic subset G < iq(P(E| otp(B')) so that Mp: [7[G] is closed under
countable sequences. The only change needed in the construction is the restric-
tion of the range of the coordinate b., to supp(£,, .) whenever (X, {) € domain(7)
and k- is the {th member of B’ above A.

Now suppose ¢ is a formula, with parameters given by standard forcing
names, which is true in Cp/ 7. By Lemma there is a condition ([r],d)
in the forcing R for Mp [ which establishes the parameters of ¢ such that
[r] - ». Now ([r],b) is also a condition in RM#’  so we can use Section to
yield a Mp/-generic subset G’ of ig(P(E | otp(B')) which includes io([r]) and
establishes the same parameters. Hence ¢ holds in CMs'[¢'] = Cp, }47. O

Clause is used here to ensure that the enough of the image of E at
each k,, € B'\B is present in Mp/ |17} to construct the generic set as in section

Now we want to complete the definition of the elements of Diagram by
defining k and o. The restriction of o to B’ is determined by the map 7 specified
in the Definition of a virtual gap construction sequence for B’ over B: if
7(y) € B then o(y) = k(7(7)), and if 7(v) = (A, §) € domain(7) then o(v) is the
critical point of an ultrapower of A in the iteration k. The restriction of o to B’
determines its restriction to the generators of Mp: 7], which determines in turn
the remainder of o.

Thus it will be sufficient to define the iteration k, which consists of an ul-
trapower by the image of E, for each z € domainsj and, in addition, for each
member of g an iteration of length w,. For the latter we need to begin by
choosing a sequence F of extenders in M: a suitable choice is to let F,, be the
least xT"-strong extender in M for each v < w;. The two essential conditions
that the choice of F must satisfy are (i) F' € Ult(M, E) and (i) F is cofinal
among the extenders below F in M. The first clause is needed so that for each
(&, M) € g, if v is such that A = k, then zV(F’) € Mp; thus k is definable over
Mp from a countable parameter in Mp[G]. This fact will be used to identify
the ordinals of M} with those of Mp. The second clause is needed so that the
ordinal k(y ¢) © i(k), which will become o(77*())), depends only on g, or more
precisely, on otp({&’ < & | (£, \) € g}); this fact ensures (using Lemma
that the restriction of k to ordinals in Mp is similarly independent of the choice
of B’. This fact will be needed for the proof of Lemma [4.49

Here is the precise definition of k, which is illustrated by Figure
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Figure 3: The maps o and k inside the block between ¢’ and § which is associated
with the gap in B headed by §. The dotted lines represent the maps o and k;
the vertical lines represent intervals of I contained in the indicated models.

Definition 4.48. The iteration k is the direct limit of the sequence of em-
beddings k,: Mp — MZ for z in the well ordering (B u domain(7), <). In
the following, § is the head of a gap in B and 4§’ is the supremum of the set
of the heads of gaps below § (or § = 0 if there are none). We assume that
k.: Mp — MZ has been defined for all z < §’. Let A be the unique member of

bn[d,9).
1. My = Mp.
2. If z is a limit point in the ordering < and z ¢ g then k,: Mp — M is the

direct limit of the embeddings k..: Mp — M for 2’ < z.

If 2 = 7 € B is the successor in I of 7/ then M* = M and k; = k..
Hence k, = ks and M} = M} for all 7€ B n [§',0), and k, = kxp1 = ks

and M} = My, = M§ for all 7 in the tail B n (A, 0) of B above .

Itz = (M€ + 1) € domain(if), or if z = A and (A, §) is its immediate

predecessor in <, then M} = Ult(M(*)\’g), E,”,‘M) where, letting 7' be such

that 0’ = k., we write B} for ks ¢) 0 iy (Ea).

If z = () &) € g, then let k.: Mg — M, be the direct limit of the maps
(k| 2/ < z). Then k, is the iterated ultrapower i ok,: Mg — M., —
M}, where F* = l}oivz(ﬁ)
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This completes the definition of the map k. As pointed out earlier, this
induces the definition of o by setting o(y) equal to the critical point of the
ultrapower if{i)ﬂz M;“(Z) — M;k(z)+1’ and thus completes the definition of the
maps of diagram . The extension to the Chang model illustrated in Dia-
gram (|16 is straightforward. We have already observed that the Chang model
Ck built on My is the same as Cp, giving the identity on the bottom of the
diagram. Lemma |4.47| asserts that C'p/ 77 is an elementary substructure of Cp/,
and o: Cp/ 1] — Cg 7] is an isomorphism. It follows that Cg 7 % v(x,o(y)),
and we will be finished if we can conclude from this that that Cp I% U(x,o(y)),

and this is asserted by Lemma [1.49}

Lemma 4.49. Suppose that B < B’ are limit suitable sequences and 1] is a
virtual gap construction sequence for B’ over B such that ny ¢ > w™ - otp(B u
domain(7), <) for all (\,§) € domain(7]) and all n € w. Let k: Mp — My
be the wirtual gap construction iteration, and let Cil7 © Cy be as given in
Diagram . Then Cy tij < C.

This is the promised addition to the induction hypothesis for Lemma [3.11]
and concludes the proof of the induction step for that Lemma. It remains only
to prove the induction step for Lemma [4.49

Proof. As was stated earlier, this proof is a simultaneous induction along with
Lemma we assume the following two conditions on a pair (¢,¢) as an
induction hypothesis:

1. Under the hypothesis of Lemma Cs IE, 0(d@) <= k= 6(a) for any

de C,, provided that /' <t or/ =, and 6 is a subformula of or equal to

®.
2. Under the hypothesis of Lemma Crli )?CL/ 0(d) < 'E,' 0(a@) for all
d € Cy 117, provided that ' < ¢ or «/ =+ and 6 is a proper subformula of (.
The induction hypothesis used for Lemma [3.11| was the same, except that in
the first clause the formula § was required to be a proper subformula of ¢. As
in the proof of Lemma the only problematic case with that in which ()
is the formula 3y (z,y).
Let B and 77 be as in Lemma4.49| and let = be an arbitrary member of Cj, [

such that % Jy(x,y). We need to show that Cy, 77 % Jyip(z,y). By clause (1)

of the induction hypothesis, Cp = Jy¢(z,y). Fixy € Cp so that = ¥z, y).
We now define an extension ﬁ; of the virtual gap construction sequence 77 such
that y € Cpln’. The sequence 1’ will have the same sets b and g as 77, but the
domain of 77 will be enlarged by adding w new elements as a new tail for each
(A &) € g. Thus, for each A € b define a map ¢y with domain(¢y) = length(7))
by

0 if € =0,
1 (6) = ta(€)+1 if&=¢ +1,
ST ) supg e ta(€) if € is a limit and (X, &) ¢ g

supg ¢ tA(§) +w if (A §) eg.
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Now define r;’ , using an ordinal 7’ € w; to be determined shortly:

domain(r) = { (A, €) | € < suprange(ty) }
b7 =07, and g7 = {02 (0) | (A.€) € 97}, and

77, _ /r]A751 lfg = t(é‘/)
M (A€ ¢ range(t).

As in the choice of 7, the two conditions on 7’ are that (i) ' > w™ - otp(B u
domain(ry'), <) for each n € w, and (ii) y € Cx [77. Note that the first condition
implies that 7’ satisfies the hypothesis of Lemma if newand £ = t\(&)
then

Me = Mhe > Wt otp(B U domain(7j), <)
wn

— W" - w - otp(B U domain(7), <) = w" - otp(B U domain (1), <).

The second condition will be satisfied by any sufficiently large 7/, since Cg =
(Ck = Un’<w1 (Ck rnl

For the remainder of the proof we refer to Diagram . The inner rectangle
is the same as Diagram . The map 7 is determined by using the map
(A &) — (A Ex(§)) to map the generators of indiscernibles from 77 into those of

-

7’. As with Diagrams and , Diagram induces a similar diagram
for the corresponding Chang models.

MB// o MB// r’l?

Mp > Mp: |7
] Ea ” (17)
k o
Mg M;, > M 1]
N N
T
v
M > My Iy

We claim that 7| (Cy %) is the identity. First, Lemma implies that the
restriction of 7 to the ordinals of My, [1] is the identity. Now every member Cy, |17
is represented by a term w = {z € C, |5 ¢(z,a) }, where // € My [ij and a is a
sequence of ordinals from My 7. Thus T(LU)) is represented by the same term in
Cg 1. But C; = Cpr = Cp, so this term represents the same set w in Cyy.

Now define B” to be B’ together with the next w-many members of I from
each of the gaps of B’ which are not gaps of B. The right-hand trapezoid
commutes, and in particular (o)~ !(z) = o~ '(2). Now Cy 7/ = Jyd(z,y),

and since ¢’ is an isomorphism it follows that Cpgr |1/ k= (o~ (z),y). Tt
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follows by Lemma[4.47|that C g~ satisfies the same formula, and by the induction
hypothesis Lemma?)i for (¢, ) it follows that % Jy(o~(z),y). By another
application of the same induction hypothesis it follows that C B satisfies the
same formula, and by Lemma [4.47] again Cp |77 does as well. Finally, it follows
that Cg 1] I%L Jyu(x,y), as required. O

This completes the proof of Lemma and hence of Theorem except
for the case that kg ¢ B. This is dealt with in the next section.

4.8 Dealing with finite exceptions and k¢ ¢ B

In the last subsection we assumed that kg = k is a member of B; here we indicate
how this extra assumption can be eliminated. The same argument supports the
possibility of finitely many exceptions in the statement of Theorem

The problem is that since k¢ ¢ B, the smallest member of B’ may be smaller
than the smallest member of B. This invalidates the definition of the map &, in
Diagram ([I5). Now suppose that B = { ), | ¥ < (} is a limit suitable set with
Ao > Ko, that € Cp, and that C = ¢(x). We want to show that Cp = ¢(x).
Since B is limit suitable, A\g > k. Let B = Bu {k, | n < w}. Since B’ is
also limit suitable and x¢ € B’, the version of Theorem already proved
implies that Cp: = p(z).

Now let G < ig(P(E§)/<) be the Mpi-generic set constructed in Sec-
tion [£.6] and consider the set G N Mp. By appealing the the factorization of
P(E_"M)/H given by Proposition @ we can regard G n M as a subset of
G x G" < iy, (P(Elw)/<) x R. The set G” is a Mg-generic subset of R, which
is essentially iq(P(E)w,()/<) with some additional Cohen subsets, and G’
is an Mp-generic subset of the direct forcing order, (ix,(P(Ew)/<, <* /).
Since z is in Mp, it has a name in the forcing over Mp/ which not involve any
of the indiscernibles &, for n € w, and because Iy (z,y) is true in Cp/, there
is a condition [s] € G' which forces over Mp[G"] that Jyy(x,y). Thus, extend-
ing G’ to a Mp-generic subset G of the forcing order iy, (P(Erw>/<->)7 <) will
give a model CM? (G Which satisfies Jy(x,y). Tt is also true that any such
generic subset will yield an unbounded set of indiscernibles in A\g N Mp = ko,
and hence will collapse wy. However, (C]]\;B [N 5 defined in Mp [G"][G] by
treating its set {&, | n € w} U B of indiscernibles as a limit suitable set with
Ao = K as the head of a gap. This means that the members of (CgB (GG ape
the denotations of standard names, using as parameters sequences of ordinals
which are bounded in rg. It follows that Ch>L¢] [¢"] is the same as cYe e,
which is Cg. Hence Cp = Jyv(z,y).

This concludes the proof of Lemma [3.11] and hence of Theorem [1.4] and
the same argument can be used to prove the generalization Theorem Note
that it is critical to the argument that there are only a finite number of gaps
(in this case, only one gap) in B which need to be dealt with, for otherwise
B\ B would include infinitely many extra w sequences, and Cp: would include
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Prikry sequences obtained by taking finitely many from indiscernibles each such
sequence, which are not in the extension Mp/[G n Mg].

5 Questions and Problems

This study leaves a number of questions open. Two which were mentioned in
the introduction essentially involve filling gaps in this paper:

Question 5.1. What is the large cardinal strength of a sharp for C?

This question can be taken in either a coarse or fine sense. In the coarse
sense, we make the following conjecture:

—.

Conjecture 5.2. If there is an extender model N = L(R)[E] over the reals with
an extender E on E of length £T(“*+1) in N, then there is a mouse for the Chang
model.

If the conjecture is false, then it would be surprising if the coarse answer
to Question [5.1] were not given by Theorem [I.4] that is, that the sharp for the
Chang model is a R-mouse M = JP(R)[E], projecting to R, such that E has a
final extender F of length either x*(“*1 or k71 in M, where  is the critical
point of E. If we assume that this is correct, then we can state the finer version
of Question [5.1

Question 5.3. What is the height p of this mouse?

If A = length(E) then p cannot be smaller than the index of E in the sequence
E, which in the indexing of [MS94] is (p*)™. It seems plausible that this is
sufficient.

We repeat here a second point which was raised in the introduction:

Question 5.4. Does the mouse asked for in the previous problems give a real
sharp? That is, is there can the choice of terms which eliminates the need for
restricted formulas in the Definition [I.3| of a sharp?

A solution to this question may require proving Conjecture [3.4] from the
introduction, which asserts that K (R)C is an iterated ultrapower of the model

The structure of this iteration j: Mq|Q — K(R)C poses some interesting
questions:

Question 5.5. Is j(A) = X for every A € I of cofinality w?

Note that this would follow from an affirmative answer to Conjecture [5.2] by
the results of Gitik used to prove Theorem [L.4{[1}). Also, the same argument
shows that every cardinal of cofinality w is measurable in K (R)€. On the other
hand, Gitik’s results which were adapted for our proof of Theorem suggest
the following as a converse:

Question 5.6. Does every measurable cardinal of K (R)® have cofinality w in
V?
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It seems likely that a positive solution to Question would imply a positive
answer to Question by extending an ultrafilter embedding from a measurable
cardinals of uncountable cofinality to an embedding of C into itself.

The remaining questions involve the w;-Chang model, the least model of ZF
containing all wi-sequences of ordinals.

Question 5.7. Is it consistent that there is a sharp for the w;-Chang model
C(w1)? If so, what is its strength?

Little is known about this. For the lower bound, Gitik’s technique for re-
covering extenders from threads given by iterations of length w; can be used to
show that it implies the existence of a P(w)-mouse with an extender of length
wsy. To obtain longer extenders from this technique would require having a cov-
ering lemma giving covering sets of size w; in K (P(w))«?) for sets of size w;
in the w;-Chang model; however all of the mice in C(w;) contain P(w;) and
hence are larger than w;.
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