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Abstract

Woodin has shown that if there is a Woodin limit of Woodin cardinals
then there is, in an appropriate sense, a sharp for the Chang model. We
produce, in a weaker sense, a sharp for the Chang model using only the
existence of a cardinal κ having an extender of length κ`ω1 .
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1 Introduction

The Chang model, introduced in [Cha71], is the smallest model of ZF set theory
which contains all countable sequences of ordinals. It may be constructed as
LpωΩq, that is, by imitating the recursive definition of the Lα hierarchy: setting
C0 “ H and Cα`1 “ DefCαpCαq, but modifying the definition for limit ordinals
α by setting Cα “ rωsα Y

Ť

α1ăα Cα. Alternatively it may be constructed, as
did Chang, by replacing the use of first order logic in the definition of L with
the infinitary logic Lω1,ω1 . We write C for the Chang model.

Clearly the Chang model contains the set R of reals, and hence is an exten-
sion of LpRq. Kunen [Kun73] has shown that the axiom of choice fails in the
Chang model whenever there are uncountably many measurable cardinals; in
particular the theory of C may vary, even when the set of reals is held fixed. We
show that in the presence of sufficiently large cardinal strength this is not true.
This work is inspired by an earlier unpublished result of Woodin, which states
that if there is a Woodin limit of Woodin cardinals, then there is a sharp for
the Chang model. Our result is not comparable to Woodin’s: ours has a much
weaker hypothesis, but a much weaker conclusion. Perhaps the most striking
aspect of the new result is its characterization of the size of the Chang model:
although the Chang model, like LpRq, can have arbitrary large cardinal strength
coded into the reals, the large cardinal strength in the Chang model, above that
of LpRq, is at most opκq “ κ`ω1 ` 1 even in the presence of large cardinals in
V ,

The next three definitions describe our notion of a sharp for C. Following
this definition and a formal statement of our theorem, we will more specifically
discuss the differences between our result and that of Woodin.

As with traditional sharps, the sharp for the Chang model asserts the ex-
istence of a closed, unbounded class I of indiscernibles. In order to state the
conditions on I, as Definition 1.3, we need two preliminary definitions:

Definition 1.1. Say that a subset B of a closed class I is suitable if (a) it
is countable and closed, (b) every member of B which is a limit point of I
of countable cofinality is also a limit point of B, and (c) it is closed under
predecessors in I.

We say that suitable sequences B and B1 are equivalent if they have the same
order type, and agree about which of their members are successor members of
I.

Note that if B is suitable and β1 is the successor of β in B, then either β1 is
the successor of β in I, or else β1 is a limit member of I and cfpβ1q ą ω. Indeed
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clauses (b) and (c) of the definition of a suitable sequence are equivalent to the
assertion that every gap in B, as a subset of I, is capped by a member of B
which is a limit point of I of uncountable cofinality.

Definition 1.2. Suppose that T is a collection of constants and functions with
domain in rκsn for some n ă ω. Write LT for the language with symbols
t“, Pu Y T (identifying T with a corresponding set of constant and function
symbols). A restricted formula in the language LT is a formula such that every
variable occurring inside an argument of a member of T is free in ϕ.

Definition 1.3. We say that there is a sharp for the Chang model C if there is
a closed unbounded class I of ordinals and a set T of Skolem functions having
the following three properties:

1. Suppose that B and B1 are equivalent suitable sets, and let ϕpBq be a
restricted formula. Then

C |ù ϕpBq ðñ ϕpB1q.

2. Every member of C is of the form τpBq for some term τ P T and some
suitable sequence B.

3. If V 1 is any universe of ZF set theory such that V 1 Ě V and RV 1 “ RV
then, for all restricted formulas ϕ

CV
1

|ù ϕpBq ðñ CV |ù ϕpBq.

for any B Ď I which is suitable in both V and V 1.

Note, in clause 3, that CV 1 may be larger than CV . A sequence B which
is suitable in V may not be suitable in V 1, as a limit member of B may have
uncountable cofinality in V but countable cofinality in V 1. However the class I,
as well as the theory, will be the same in the two models.

Recall that a traditional sharp, such as 07, may be viewed in either of two
different ways: as a closed and unbounded class of indiscernibles which generates
the full (class) model, or as a mouse with a final extender on its sequence which
is an ultrafilter.

From the first viewpoint, perhaps the most striking difference between 07

and our sharp for C is the need for external terms in order to generate C from
the indiscernibles. From the second viewpoint, regarding the sharp as a mouse,
the sharp for the Chang model involves two modifications:

1. For the purposes of this paper, a mouse will always be a mouse over the
reals, that is, an extender model of the form JαpRqrEs.

2. The final extender of the mouse which represents the sharp of the Chang
model will be a proper extender, not an ultrafilter.

It is still unknown how large the final extender must be. We show that its
length is somewhere in the range from κ`pω`1q to κ`ω1 , inclusive:
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Theorem 1.4 (Main Theorem). 1. Suppose that there is no mouse M “

JαpRqrEs with a final extender E “ Eγ such that cfplengthpEqq ą ω and
lengthpEq is at least κ`pω`1q in JαpRqrEs. Then KpRqC, the core model
over the reals as defined in the Chang model, is an iterated ultrapower
(without drops) of KpRqV ; in particular, there is no sharp for the Chang
model.

2. Suppose that there is a model LpRqrEs which contains all of the reals and
has an extender E of length pκ`ω1qLpRqrEs, where κ is the critical point of
E. Then there is a sharp for C.

This problem was suggested by Woodin in a conversation at the Mittag-
Lefler Institute in 2009, in which he observed that there was an immense gap
between the hypothesis needed for his sharp, and easy results in the direction of
the lower bound in clause 1 at, for example, a model with a single measure. At
the time I conjectured that the same argument might show that any extender
model would provide a similar lower bound, but James Cummings and Ralf
Schindler, in the same conversation, suggested as more likely the bound exposed
in Theorem 1.4(1).

I would also like to thank Moti Gitik, for suggesting his forcing for the proof
of clause 2 and explaining its use. I have generalized his forcing to add new
sequences of arbitrary countable length. I have also made substantial but, I
believe, inessential changes to the presentation; I hope that he will recognize his
forcing in my presentation. Many of the arguments in this paper, indeed almost
all of those which do not directly involve either the generalization of the forcing
or the application to the Chang model, are due to Gitik.

1.1 Comparison with Woodin’s sharp

Our notion of a sharp for C differs from that of Woodin in several ways. We
will discuss them in roughly increasing order of importance. The first two are, I
believe, inessential: (i) The theory of our sharp can depend on the set of reals,
while the theory of Woodin’s sharp does not; however the invariance of his theory
is due to the presence or absence of large cardinals, not to the definition of the
sharp. An appropriate analogy is with the sharp for LpRq, which is equivalent
to the existence of a mouse over the reals having a measurable cardinal. Woodin
has shown that the theory of this mouse stabilizes in the presence of a class of
Woodin cardinals, and the same proof applies to our sharp for the Chang model.

(ii) Woodin’s sharp is defined in terms of the infinitary language Lω1,ω1
,

whereas ours uses only first order logic; however these two languages are equiv-
alent in this context: since C is closed under countable sequences and Cα ă C
whenever α is a member of the class I of indiscernibles, the existence of our
sharp implies that any formula of Lω1,ω1 is equivalent to a formula of first order
logic having a parameter which is a countable sequence of ordinals.

The status of the next two differences is unclear at this point, and requires
further study. (iii) Woodin’s sharp allows for any countable subsequence of I,
while we allow only sequences which have all of their gaps capped by a limit
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point of I of uncountable cofinality. This allowance is somewhat relaxed in
Theorem 3.6, and may be sensitive to an improved choice of the set of terms for
our sharp; however I believe that this patterning of the indiscernible sequences
reflects basic information about the Chang model.

(iv) The notion of restricted formulas is entirely absent from Woodin’s re-
sults: he allows the terms from T to be used as full elements of the language. I
believe that further work, with a better choice of terms, will eliminate the need
for restricted formulas. The failure of this conjecture would expose a major
weakness in our notion of a sharp.

Finally, (v) Woodin’s construction is stronger in a way which makes it some-
what orthogonal to our construction: he has observed, in a personal communi-
cation, that his construction yields a sharp for a much larger model C` which
includes, in addition to all countable sequences of ordinals, the non-stationary
ideal on Pω1

pλq for each regular cardinal λ. Thus, although his work does imply
as a corollary that there is a sharp for C, the two constructions are complemen-
tary rather than in competition.

It should be emphasized that, as indicated by clauses (iii) and (iv) above,
the definition given in this paper of the notion of a sharp for the Chang model
and, especially, the specific choice made of the set of terms in the language and
of the class I of indiscernibles should be regarded as preliminary. Their ultimate
resolution will probably depend on closing the gap in the hypotheses of the two
parts of Theorem 1.4 to determine the exact large cardinal strength of the sharp
of the Chang model.

1.2 Some basic facts about C
As pointed out earlier, the Axiom of Choice fails in C if there are uncountably
many measurable cardinals; however, the fact that C is closed under countable
sequences implies that the axiom of Dependent Choice holds, and this is enough
to avoid most of the serious pathologies which can occur in a model without
choice. For life without Dependent Choice, see for example [GK12], which gives
a model with surjective maps from Ppℵωq onto an arbitrarily large cardinal λ
without any need for large cardinals.

The same argument that shows that every member of L is ordinal definable
implies that every member of C is definable in C using a countable sequence of
ordinals as parameters.

In the proof of part 1 of Theorem 1.4 we make use of the core model KpRq,
defined inside C, and in the absence of the Axiom of Choice this requires some
justification. In large part the Axiom of Choice can be avoided in the construc-
tion and theory of the core model, since the core model KpRq itself can be well
ordered by using countably complete forcing to map the reals onto ω — a pro-
cess which does not change the Chang model. However one application of the
Axiom of Choice falls outside of this situation: the use of Fodor’s pressing down
lemma, the proof of which requires choosing closed unbounded sets as witnesses
that the sets where the function is constant are all non-stationary. This lemma
is needed in the construction of KpRq in order to prove that the comparison of
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pairs of mice by iterated ultrapowers always terminates. However, this is not a
problem In the construction of KpRq in C, as we can apply Fodor’s lemma in V ,
which we assume satisfies the Axiom of Choice, to verify that all comparisons
terminate.

The proof of the covering lemma involves other uses of Fodor’s lemma; how-
ever we do not use the covering lemma.

1.3 Notation

We use generally standard set theoretic notation. We use Ω to mean the class of
all ordinals (sometimes regarded as an ordinal itself). In forcing, the notation
p ‖ ϕ means that the condition p decides ϕ, that is, either p , ϕ for p ,  ϕ.
If s is a condition in a forcing order P , then we write P }s for the forcing below
s, that is, t p1 P P | p1 ď p u. We use hrBs for the range of h on B, that is,
hrBs “ thpbq | b P B u. We use rXsκ for the set of subsets of X of size κ. If η
is a well order then we use otppηq for its order type.

If E is an extender, then we write supppEq for the support, or set of gener-
ators, of E. Typically we take this to be the interval rκ, lengthpEqq where κ is
the critical point of E; however we frequently make use of the restriction of E to
a non-transitive1 set of generators: that is, if S Ď supppEq then we write EþS
for the restriction of E to S, so UltpV,EþSq – t iEpfqpaq | f P V ^ a P rSsăω u.
We remark that UltpV,EþSq “ UltpV, Ēq, where Ē is the transitive collapse
of E, that is, the extender obtained from E by using the transitive collapse
σ : rκ, lengthpĒqq – supppEq X t ipfqpaq | f P V ^ a P rSsăω u and setting
its constituant ultrafilters by defining pĒqα “ Eσ´1pαq. This identification is
frequently used in this paper in arguments which seem to naturally use the re-
stricted extender EþS, but EþS is not a member of the model in question.
The fact that the collapse Ē is a member the model justifies these arguments.
This use will not always be explicitly stated.

We make extensive use of the core model over the reals, KpRq. However
we make no (direct) use of fine structure, largely because we make no attempt
to use the weakest hypothesis which could be treated by our argument. The
reader will need to be familiar with extender models, but only those weaker than
strong cardinal, that is, without the complications of overlapping extenders and
iteration trees. For our purposes, a mouse will be a model M “ JαpRqrEs, where
R is the set Ppωq of reals and E is a sequence of extenders, and it generally can be
assumed to be a model of Zermelo set theory (and therefore equal to LαpRqrEs).

If M “ JαpRqrEs is a mouse then we write M |γ for JγpRqrEæγs, that is,
the restriction of M to ordinals below γ without including the active extender
(if there is one) Eγ with index γ. We most commonly use this as N |Ω when
the model N is the result of an iteration of length Ω and the length α of N is
greater than Ω.

1In this context, we regard supppEq “ rκ, λq as “transitive” despite its omission of ordinals
less than κ. We could equivalently, but less conveniently, use supppEq “ lengthpEq.

6



2 The Lower bound

The proof of Theorem 1.4(1), giving a lower bound to the large cardinal strength
of a sharp for the Chang model, is a straightforward application of a technique
of Gitik (see the proof of Lemma 2.5 for δ “ ω in [GM96]).

Proof of Theorem 1.4(1). The proof uses iterated ultrapowers to compare KpRq
with KpRqC. Standard methods show that KpRqC is not moved in this compar-
ison, so there is an iterated ultrapower xMν | ν ď θ y, for some θ ď Ω defined
by M0 “ KpRq, Mα “ dir limtMα1 | α

2 ă α1 ă α u for sufficiently large α2 ă α
if α is a limit ordinal, and Mα`1 “ UltpM˚

α , Eαq where Eα is the least extender
in Mα which is not in KpRqC and M˚ is equal to Mα unless Eα is not a full
extender in Mα, in which case M˚

α is the largest initial segment of Mα in which
Eα is a full extender.

We want to show that (i) this does not drop, that is, M˚
α “ Mα for all α,

and (ii) Mθ “ KpRqC.
If either of these is false, then θ “ Ω and there is a closed unbounded class

C of ordinals α such that critpEαq “ α “ iαpαq. Since opκq ă Ω for all κ it
follows that there is a stationary class S Ď C of ordinals of cofinality ω such
that iα1,αpEα1q “ Eα for all α1 ă α in S. Fix α P S X limpSq; we will show that
Mα contradicts the hypothesis of Theorem 1.4(1).

To this end, let xαn | n P ω y be an increasing sequence of ordinals in
S such that

Ť

nPω αn “ α. An argument of Gitik (see [GM96, Lemma 2.3])
shows that the threads belonging to generators of Eα are definable in C using
~α “ xαn | n P ω y as the only parameter. That is, there is a formula ϕ such

that for all γ ă pα`ωqMα , the formula ϕp~α, ~β, α, γq is true in C if and only
if iαn,αpβnq “ γ for all but finitely many n P ω. If η ă α`pω`1q then this
can be extended to all γ ă η by using the thread x i´1

αn,αpηq | n ă ω y as an

additional parameter. Since Eα R C it follows that lengthpEαq ě κ`pω`1q,
which contradicts the hypothesis of Theorem 1.4(1).

3 The upper bound

The proof of Theorem 1.4(2) will take up the rest of this paper except for some
questions in the final Section 5.

The hypothesis of Theorem 1.4(2) is stronger than necessary: our construc-
tion of the sharp for C uses only a sufficiently strong mouse over the reals, that
is, a model M “ JγpRqrEs where E is an iterable extender sequence.

At this point we describe a generic procedure for constructing a sharp from a
suitable mouse. For this purpose we will assume that M is a mouse satisfying the
following conditions: (i) |M | “ |R|, definably over M , indeed (ii) there is an onto
function h : RÑM which is the union of an increasing ω1 sequence of functions
in M , and (iii) M has a last extender, E PM , such that lengthpEq “ pκ`ω1qM .
We can easily find such a mouse from the hypothesis of Theorem 1.4(2) by
choosing a model N of the form LγpRqrEs with the last two properties and
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letting M be the transitive collapse of Skolem hull of RYω1 in N . At the start
of section 4.1, where we begin the actual proof, we will specify more precisely
what assumptions we make about the mouse, but we have made no effort to
determine the weakest mouse for which our techniques work.

We add one further condition on M : (iv) the least measurable cardinal of
M should be larger than θM , the least cardinal λ of M such that λ “ f rRs
for any function f P M . Any mouse satisfying the conditions (i–iii) can be
made to satisfy condition (iv) by iterating the least measurable cardinal past
θ. The iteration map will not be an elementary embedding, but it will preserve
conditions (i–iii).

This condition would allow us to assume the Continuum Hypothesis by using
M rgs instead of M , where g is a V -generic map collapsing R onto ω1. Doing
so would not add any new countable sequences and hence would not affect the
Chang model. This will be needed in sections 4.6 and 4.7 in order to construct
M -generic sets; however we will not do so until then: but the reader certainly
may, if desired, assume that this has been done.

The following simple observation is basic to the construction:

Proposition 3.1. The mouse M is closed under countable subsequences.

Proof. By the assumption (ii) on M , any countable subset B Ď M is equal to
hrbs for a function h PM and a set b Ă R. Since M contains all reals, and any
countable set of reals can be coded by a single real, b PM and thus B PM .

As in the case of 07, we obtain the sharp for the Chang model by iterating
the final extender E out of the universe.

Definition 3.2. We write iα : M0 “ M Ñ Mα “ UltαpM,Eq. In particular
MΩ is the result of iterating E out of the universe, so that iΩpκq “ Ω.

Let κ “ critpEq. We write κν “ iνpκq and I “ tκν | ν P Ω u. The generators
belonging to κν are the ordinals i0,νpβq such that κ ď β ă pκ`ω1qM .

Note that every member of MΩ is equal to i0,Ωpfqp~βq for some function

f P M with domain κ and some finite sequence ~β of generators. The following
observation follows from this fact together with Proposition 3.1.

Proposition 3.3. Suppose that N Ě MΩ|Ω is a model of set theory which
contains all countable sets of generators. Then CN “ C.

Proof. It is sufficient to show that N contains all countable sets of ordinals,
but that is immediate since every countable set B of ordinals has the form
B “ t iΩpfnqp~βnq | n P ω u, where each fn is a function in M and each ~βn
is a finite sequence of generators. The sequence x fn | n P ω y is in M Ď N

by Proposition 3.1 and the sequence x ~βn | n P ω y is in N by assumption, so
B P N .

Clearly the class I gives a sharp for the model MΩ|Ω in the sense of Defini-
tion 1.3 (with suitable sequences from I replaced by finite sequences), but it is
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not at all clear that I gives a sharp for C as well. We show starting in section 3.3
that it does give a sharp when defined using the mouse specified there.

We conjecture that the sharp for the chang model can be obtained exactly
in the same way as the sharp for other models:

Conjecture 3.4. Let M be the least R-mouse such that M R C. Then KpRqC
is the lower part (below Ω) of an iterated ultrapower of M , and M provides a
sharp in (at least) the sense of this paper.

We will refer to this hypothetical mouse M as the “optimal” mouse. A ver-
ification of this conjecture would determine the correct large cardinal strength
of the sharp, and could be expected to remove some of the weaknesses which
have been remarked on in our results.

3.1 Why is suitability required?

The next result apparently shows that the restriction to suitable sets B in the
Definition 1.3 of a sharp cannot be removed. The qualification “apparently”
is needed because Proposition 3.5 does not apply to the sharp which we con-
struct, but only to the optimal sharp which we conjecture exists. Nevertheless,
Proposition 3.5 is an important motivation for our argument for Theorem 1.4(2).

Following Proposition 3.5, Theorem 3.6 is a strengthening of our Main The-
orem 1.4(2) which comes close to suggesting that Proposition 3.5 is the only
restriction (at least in this direction) to the sharp for C.

The core model KpRqC of the Chang model should not be expected to equal
MΩ|Ω, where M is the optimal mouse; rather it will be an iterate of that model.
This is because all of the members of I are measurable in MΩ|Ω, but it is likely
that every measurable cardinal of KpRqC has cofinality ω.

Proposition 3.5. Assume that KpRqC is an iterate of MΩ|Ω, with an iteration
map k : MΩ|Ω Ñ KpRqC such that kpκνq “ κν for all κν P I. Suppose further
that k is consistent with the set T of terms.

Then for any two closed, countable subsets B and B1 of I which disagree
infinitely often about either (i) which adjacent members are not adjacent in I
or (ii) which members are limit points of I of uncountable cofinality, there is a
restricted formula ϕ such that C |ù  

`

ϕpB1q ðñ ϕpBq
˘

.

We will not give a precise definition of the assumption that “k is consistent
with the set T of terms”; however we will point out where it is used in the proof.

Proof. First suppose that B “ xλν | ν ă ξ y and B1 “ xλ1ν | ν ă ξ y are
counterexamples to clause (i). Thus they are increasing subsequences of I of
the same length, and there is an infinite increasing sequence x νn | ν ă ω y of
ordinals smaller than ξ such that for each n, λνn`1 is the successor in I of λνn ,
but λ1νn`1 is larger than the successor in I of λ1νn .

Let Un be the ultrafilter on λ1νn`1 associated to the image of E on λ1νn`1.
That is, if ξn is the ordinal such that λ1νn`1 “ κξn , then

Un “ iξn
`

tx Ď κ | κ P iEpxq u
˘

.
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Now let τn be the least member of I above λ1νn , so that λ1νn ă τn ă λ1νn`1.
Then x τn | n P ω y is MΩ|Ω-generic for the Prikry forcing with conditions

t p~a, ~Aq | Dk ă ωp@i ă k ai ă λ1i`1 ^ @i ě k Ai P Uiq u,

which adds a single indiscernible for each of the ultrafilters Un. In particular,
there exists such a Prikry sequence x cn | n P ω y such that λ1νn ă cn ă λ1νn`1 for
each n P ω. This fact is preserved by the iteration k: there is a KpRqC-generic
Prikry sequence for the sequence of ultrafilters kpUnq, each member of which
lies in the interval pkpλ1νnq, λ

1
νn`1q. There is a restricted formula ϕpB1q which

asserts that there is such a sequence, provided that the terms of the language
are consistent with k in the sense that there are terms τ1 and τ2 in T such that
τ1pλ

1
νnq “ kpλ1νnq and τ2pλνn`1q “ kpUnq for each n ă ω. Then ϕpB1q is true in

C.
To see that this ϕpBq is false in C, let cn be any sequence with kpλνnq ă

cn ă λνn`1 for each n. Since λνn`1 is the next member of I, the assumption on
cn implies that there is a function f P M such that cn ă k ˝ iΩpfqpkpλνnqq ă
λνn`1 for each n ă ω. Since by assumption k : MΩ|Ω Ñ KpRqC, the function
k˝iΩpfqæλνn`1 is in KpRqC, and hence the sequence x cn | n ă ω y is not generic
over KpRqC. Thus ϕpBq is false in C, and this completes the proof for clause (i).

Now suppose B and B1 do not satisfy clause (ii): there is an infinite sequence
x νn | n ă ω y of ordinals below ξ such that for each n ă ω, λνn is a successor
member of I but λ1νn is a limit member of I of uncountable cofinality. Then the
analysis given in the first part of the proof shows that if Un is the ultrafilter on
λ1n, then for any sequence pυn | n ă ωq such that υn ă λ1νn for all n P ω, there is
a KpRqC-generic Prikry type sequence for the sequence of ultrafilters x kpUnq |
n ă ω y with the nth member in the interval pυn, λ

1
νnq. Again (assuming k

is consistent with the terms of T ) this statement can be made by a restricted
formula, and that formula is false for B: Let τn be the immediate predecessor in
I of τn. Then the argument given in the first part of this proof shows that there
is no Prikry sequence having each member cn in the interval pkpτnq, λνnq.

Note that while Proposition 3.5 says that gaps in B are significant, it does
not attach any significance to the length of the gaps other than the distinction
between gaps headed by a limit or successor member of member of I. Fur-
thermore, it does not attach significance to individual gaps, but only to infinite
sequences of gaps. The following strengthening of Theorem 1.4(2) can be proved
by the technique used in Subsection 4.8 to deal with the special case κ R B of
Theorem 1.4(2).

Theorem 3.6. Call B weakly suitable if B is a countable closed subsequence
of I such that BXλ is unbounded in λ whenever λ P B and cfpλq “ ω. Call two
weakly suitable sequences B and B1 equivalent if they have the same length and,
with at most finitely many exceptions, corresponding successor members λ P B
and λ1 P B1 satisfy (i) λ is a successor point of I if and only if λ1 is, and (ii) if
λ and λ1 are successor members of I, then the I-predecessor of λ is in B if and
only if the I-predecessor of λ1 is in B1.

10



Then Theorem 1.4(2) holds for weakly suitable sequences under this notion
of equivalence.

3.2 Definition of the set T of terms.

The next definition gives the set of terms we will use to construct the sharp.
This list should be regarded as preliminary, as a better understanding of the
Chang model will undoubtedly suggest a more felicitous choice.

Definition 3.7. The set T of terms of the language for C are those terms
obtained by compositions of the following set of basic terms:

1. For each function f PM (including a constant function) with domain and
range contained in ănκ , there is a term τ such that τpzq “ i0,Ωpfqpzq for
all z for which the right side is defined.

2. For each β in the interval κ ď β ă pκ`ω1qM there is a term τ such that
τpκνq “ i0,νpβq for all ν P Ω.

3. Suppose x τn | n P ω y is an ω-sequence of compositions of terms from the
previous two cases, and domainpτnq Ď

knΩn. Then there is a term τ such
that τp~aq “ x τnp~aæknq | n P ω y for all ~a P ωΩ.

4. For each formula ϕ, there is a term τ such that if ι is an ordinal and y is
a countable sequence of terms for members of Cι then

τpι, yq “ tx P Cι | Cι |ù ϕpx, yq u.

Proposition 3.8. For each z P C there is a term τ PM and a suitable sequence
B such that τpBq “ z.

Proof. First we observe that any ordinal ν can be written in the form ν “
iΩpfqp~βq for some f PM and finite sequence ~β of generators. Each generator β
belonging to some κξ P i is equal to iξpβ̄q for some β̄ P

“

κ, pκ`ω1qM
˘

, and thus
is denoted by a term τpκξq built from clause (2). Thus any finite sequence of
ordinals is denoted by an expression using terms of type (1) and (2). Since M is
closed under countable sequences, adding terms of type 3 adds in all countable
sequences of ordinals.

Finally, any set x P C has the form tx P Cι | Cι |ù ϕpx, yq u for some ι, ϕ
and y as in clause (4). Thus a simple recursion on ι shows that every member
of C is denoted by a term from clause (4).

The terms specified in clause (2) force the limitation to restricted formulas
in Theorem 1.4(2), since the domain of these terms is exactly the class I of
indiscernibles. It is possible that a more natural set of terms would enable this
restriction to be removed, but this would depend on a precise understanding of
the iteration k.

By Proposition 3.8, every ordinal is denoted by a term from T using as
parameters only members of α ` 1. This is contrary to the spirit of 07, where

11



the term denoting α may require parameters from Izpα ` 1q. This seems to
be a weakness in our current approach, and may suggest a direction for its
refinement.

3.3 Outline of the proof

Proposition 3.3 suggests a strategy for the proof of Theorem 1.4(2): find a
generic extension of MΩ|Ω which contains all countable sequences of generators.
There are good reasons why this is likely to be impossible, beginning with the
problem of actually constructing a generic set for a class sized model2.

Beyond that, many of the known forcing constructions used to add countable
sequences of ordinals require large cardinal strength far stronger than that as-
sumed in the hypothesis of Theorem 1.4, and give models with properties which
are known to imply the existence of submodels having strong large cardinal
strength. However, two considerations suggest that this last problem may be
less serious than it may appear. First, the Chang model may reflect more large
cardinal strength than is apparent, since much of the large cardinal strength in
V is encoded in the set of reals; and, second, many of the properties requiring
the existence of models with large cardinals are false in the Chang model be-
cause of the failure of the Axiom of Choice. Results involving the size of the
power set of singular cardinals, for example, are irrelevant to the Chang model
since the power set is not (typically) well ordered there.

We avoid the problem of finding generic extensions of a class sized model
by working with submodels generated by countable subsets of I, and we find
that in fact none of the large cardinal structure in V survives the passage to the
Chang model beyond that given in the hypothesis to Theorem 1.4.

Definition 3.9. If B Ď I, then we write

MB “ tiΩpfqpbq | b is a finite set of generators for members of Bu.

If B is closed, and in particular if it is suitable, then we write CB for the
Chang model evaluated using the ordinals of MB |Ω and all countable sequences
of these ordinals.

Note that MB is not transitive; it is a submodel of MΩ, and iΩ : M ÑMB is
the canonical embedding for any B Ď I. The definition of CB implies that if B
and B1 are closed sets with the same order type then CB – CB1 . In particular, if
otppBq “ α`1 then CB – CBpα`1q “ Cκα`1

where Bpα`1q “ tκν | ν ă α`1 u.
The motivation for our work began with the observation that MB |Ω ă

MB1 |Ω ă MΩ|Ω whenever B Ď B1 Ď I. Proposition 3.5 refutes any sugges-
tion that this necessarily extends to the models CB and CB1 , however it also
motivates Definition 3.10 below.

That proposition says that we must take account of the gaps in B. To be
precise, we will say that a gap in B is a maximal nonempty interval in IzB. For

2 There is the intriguing possibility that this could be done by using the existence of C7.
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all sets B Ď I which we consider, every gap in B is headed by a limit point λ
of I which is a member of B Y tΩu with uncountable cofinality.

Definition 3.10. A subset B of I is limit suitable if (i) its closure B̄ is suitable,
and every gap in B is an interval of the form rλ, δq where (ii) δ is either Ω or
a member of B which is a limit point of I of uncountable cofinality, (iii) λ “
suppt0u YB X δq, and (iv) λ “ κν`ω for some ν P Ω.

Two limit suitable sets B and B1 are said to be equivalent if they have the
same order type and they have gaps in the same locations. If B is a limit suitable
sequence then we write CB for the Chang model constructed using only those
countable sequences which are in a suitable subset B̃ Ă B:

CB “ LΩXMB
pWq where W “

ď

t rΩXMB̃s
ω | B̃ Ď B & B̃ is suitables u.

The use of κν`ω in clause (iv) is for convenience; our arguments would still
be valid if it were only required that λ is a limit member of I of countable
cofinality.

Note that if B is a limit suitable sequence then CB is not closed under
countable sequences; in particular B is not a member of CB . Thus if δ is the
head of a gap of B then CB believes (correctly) that δ has uncountable cofinality.

Theorem 1.4(2) will follow from the following lemma:

Lemma 3.11 (Main Lemma). If B Ă I is limit suitable then CB ă C.

Note that it is not obvious even that CB Ď C, or, more accurately, that CB
is isomorphic to a subset of C. The proof of Lemma 3.11 will use an induction
on pairs pι, ϕq, with ι ď Ω, in which the induction hypothesis implies that the
map σι : CCB

ι Ñ Cιf defined by setting

σι

´

tx P CCB
ι1 | CCB

ι1 |ù ϕpx, aq u
¯

“ tx P Cι1 | Cι1 |ù ϕpx, σιpaqq uq,

for each ι1 ă ι, a P Cι1 , and formula ϕ of set theory, is an isomorphism between
CCB
ι and a subset of Cι.

To see that Lemma 3.11 suffices to prove Theorem 1.4(2), observe that any
suitable set B can be extended to a limit suitable set defined by the equation

B1 “ B Y tκν`n | κν P B ^ n P ω u,

that is, by by adding the next ω-sequence from I at the foot of each gap of B
and to the top of B. Now let B0 and B1 be two equivalent suitable sets. Then
their limit suitable extensions B10 and B11 are also equivalent, having the same
ordertype and having gaps in the corresponding places, so CB10 – CB11 . Then
for any restricted formula ϕ we have

C |ù ϕpB0q ðñ CB10 |ù ϕpB0q

ðñ CB11 |ù ϕpB1q ðñ C |ù ϕpB1q.

13



4 The Proof of the Main Lemma

The main tool used in this section is a forcing P p ~Eæδq{Ø, defined in M , such

that CB is definable inMBrGs whereG is anMB-generic subset of iΩpP p ~Eæδq{Øq
which can be constructed in V rhs for any generic Levy collapse map h : ω1 – R.
The definition of the forcing and exposition of its properties will take up several
sections. The actual proof of the lemma will be given (except for a special case
treated in Section 4.8) in Section 4.7.

The forcing we use is essentially due to Gitik (see, for example, [Git02]) and
the technique for constructing the MB-generic set G is from Carmi Merimovich
[Mer07]. Gitik’s forcing was designed to make the Singular Cardinal Hypothesis
fail at a cardinal of cofinality ω by adding many Prikry sequences, each of which
is (in our context) a sequence of generators for a fixed ω-sequence of members
of I. Thus it does what we need for the case when otppBq “ ω, but needs
to be adapted to work for sequences B of arbitrary countable length. To this
end we modify Gitik’s forcing by using ideas based on Magidor’s adaptation
[Mag78] of Prikry forcing to add sequences of indiscernibles of cofinality greater
than ω. This adds some complications to Gitik’s forcing, but on the other hand
much of the complication of Gitik’s work is avoided since we do not have to
avoid collapsing cardinals in the interval pκ`, κ`ω1q, and hence can omit his
preliminary forcing.

Our forcing is based on a sequence ~E of extenders, derived from the last
extender E of M . We begin by defining this sequence, and at the same time
specify what properties we require of the mouse M .

Definition 4.1. We define an increasing sequence, xNν | ν ă ω1 y of submodels
of M . We write Eν for EþNν , the restriction of E to the ordinals in Nν , we
write πν : N̄ν Ñ Nν for the Mostowski collapse of Nν , and we write Ēν for
π´1
ν rEνs “ π´1

ν pEqþN̄ν .
We require that the R-mouse M and the sequence xNν | ν ă ω1 y satisfy

the following conditions:

1. M is a model of Zermelo set theory such that R Ă M , |M | “ |R|, and
cfpΩM q “ ω1.

2. lengthpEq “ pκ`ω1qM .

3. If ν1 ă ν ă ω1 then pNν1 , Eν1q ă pNν , Eνq ă pM,Eq.

4. κNν XM Ď Nν .

5. |N̄ν |
M Ă Nν .

6. 3 (i) κ`pω`1q Ď N0 and M |ù |N̄0| “ κ`pω`1q, and (ii) for each ν ą 0
psupν1ăν |N̄ν1 |q

`pω`1q Ď Nν and M |ù |N̄ν | “ psupν1ăν |N̄ν1 |q
`pω`1q.

7. M “
Ť

νăω1
Nν .

3This clause seems to be required for Definition 4.32.
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We will work primarily with the extenders Eν rather than with their collapses
Ēν , because this makes it easier to keep track of the generators. However it
should be noted that Eν may not be a member of UltpM,Eq, so that further
justification is needed for many of the claims we wish to make about being able
to carry out constructions inside M . Since we never actually use more than
countably many of the extenders Eν at any one time, the following observation
will provide such justification:

Proposition 4.2. The following are all members of UltpM,Eνq:

• Pp
Ť

ν1ăν N̄ν1q

• the extender Ēν1 , and the map π´1
ν2 ˝ πν1 : supppĒν1q Ñ supppĒν2q, for

each ν1 ă ν2 ă ν

• the direct limit of the set tNν1 | ν
1 ă ν2 ă ν u along the maps π´1

ν2 ˝ πν1 ,
as well as the injection maps from Nν1 into this direct limit

Since UltpM,Eνq “ UltpM, Ēνq, this proposition allows us to regard the
direct limit as a code inside M for the extender Eν together with its system of
subextenders Eν1 for ν1 ă ν.

The hypothesis of Theorem 1.4 is more than sufficient to find a mouse M
and sequence ~N of submodels satisfying Definition 4.1: this can be done by first
defining models M 1 and xN 1ν | ν ă ω1 y satisfying all of the conditions except
Clause (7), and then taking M to be the transitive collapse of

Ť

νăω1
N 1ν . The

conditions on M are, in turn, much stronger than is needed to carry out the
construction. In view of the fact that there is no clear reason to believe that the
actual strength needed is greater that opEq “ κ`pω`1q, it does not seem that
there is presently any need to complicate the argument in order to obtain an
upper bound closer to opEq “ κ`ω1 .

We are now ready to begin the proof of Lemma 3.11. Following Gitik we
define, in two subsections, a Prikry type forcing P p~F q depending on a sequence ~F
of extenders. Subsections 4.3 and 4.4 develop its properties, and subsection 4.5
describes an equivalence relation Ø on its set of conditions. Subsection 4.6
constructs an MB-generic subset of iΩpP p ~Eæζq{Øq, and

Lemma 3.11 under the additional assumption that κ P B. Finally sub-
section 4.8 completes the proof and indicates the technique for proving Theo-
rem 3.6.

4.1 The forcing P p~F q

Throughout the definition of the forcing, until the end of subsection 4.6 we work
entirely inside the mouse M ; in particular all cardinal calculations are carried
out inside M . We are interested in defining P p ~Eæζq, but for the purposes of

the recursion used in the definition we allow ~F to be any suitable sequence of
extenders. We will not give a definition of the notion of a suitable sequence
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of extenders. All the sequences used in this section are suitable: specifically,
all of the sequences ~Eæδ for δ ă ω1 are suitable, all of the ultrafilters tX Ď

Vκ | ~Eæδ P i
EpXq u concentrate on suitable sequences, and furthermore, if ~F is

suitable then so is any ~Færγ0, τq for any 0 ď γ0 ď τ ď ζ.

A generic extension of M by P p~F q would have the form

M rGs “M r~κ,~hs,

where ~κ “ x κ̄γ | γ ď ζ y is a closed subset of κ ` 1 with κ̄ζ “ κ, and ~h “
xhν,ν1 | ζ ě ν ą ν1 y is a sequence of functions hν,ν1 : rκ̄ν , κ̄

`
ν q Ñ κ̄ν . Each of

the functions hν,ν1 is, individually, Cohen generic; however hν,ν1 will be defined,
in part, by Prikry type forcing so that some of its values, lying in the interval
rκ̄ν1 , κ̄

`ω1

ν1 q form, together with values of other members of the sequence ~h,
Prikry sequences.

The ordinal κ̄ν will be, for ν ă ζ, the νth of the principle indiscernibles
generated by the forcing. Thus κ̄ζ is always equal to κ in the forcing P p ~Eæζq

in M , and κ̄ζ “ Ω in the forcing iΩpP p ~Eæζqq. If G is the MB-generic subset

of iΩpP p ~Eæζq{Øq constructed in Subsection 4.6, then in MBrGs the sequence
x κ̄ν | ν ă ζ y will be the increasing enumeration of B.

In the generic extension MBrGs, the functions hν,ν1 will collectively encode

all countable sequences of generators of the model MB , as follows: Let ~β “
xβn | n ă ω y be any sequence of generators in MB , with βn being a generator
belonging to the νnth member κ̄νn of B. Then there will be, in M , a sequence
x ξn | n P ω y of ordinals in rκ, κ`q such that βn “ hζ,νnpiΩpξnqq for each n P ω.

Since ~ν and iΩp~ξq are both in MB , it follows that ~β PMBrGs.

The conditions of P p~F q are functions s with a finite domain such that ζ P
domainpsq Ă ζ ` 1. The values spτq of s are quadruples of the form

spτq “ pκ̄s,τ , ~F s,τ , zs,τ , ~As,τ q.

The first component specifies the value of κ̄τ , and the second component is a
suitable sequence of extenders, ~F s,τ “ xF s,τν | γ0 ď ν ă τ y of extenders, where
γ0 “ maxpt´1uYpdomainpsqX κ̄s,τ qq`1. Neither of these two components will

change in conditions s1 ď s, except that if domainps1q Ľ domainpsq, then ~F s
1,τ

will be truncated to ~F s,τærγs
1,τ

0 , τq.

Like Magidor’s forcing in [Mag78], the forcing P p~F q can be factored below
any condition s: if x τi | i ď n y enumerates the domain of s then the forcing

P p~F q}s of conditions s1 ď s in P p~F q is forcing equivalent to
ś

iďn P p
~F s,τiq.

The third component zs,τ of spτq ultimately determines the values of the
functions hτ,ν for ν ă τ . A specific description of this component will be given
next, and that will be followed by a specific description of the final component
~As,τ , which is a sequence xAs,τν | γ0 ď ν ă τ y of sets As,τν P Us,τν where Us,τν is
an ultrafilter which will be derived from F s,ττ . As in other Prikry type forcings,
the set As,τν is used to limit the possible extensions s1 ď s with ν P domainps1q.
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0 ¨ ¨ ¨ γ0 ´ 1 γ0 ¨ ¨ ¨ γ ¨ ¨ ¨

τ fzτ,0 . . . fzτ,γ0´1 pazτ,γ0
, fzτ,γ0

q . . . pazτ,γ , f
z
τ,γq . . .

...
...

...
...

...

γ fzγ,0 . . . fzγ,γ0´1 pazτ,γ0
, fzγ,γ0

q . . .
...

...
...

...

γ0 ` 1 fzγ0`1,0 . . . fzγ0`1,γ0´1 pazγ0`1,γ0
, fzγ0`1,γ0

q

γ0 fzγ0,0 . . . fzγ0,γ0´1

Figure 1: The middle component zs,τ of spτq. The element at row α and column
β is used to determine hα,β . In the case of the top row, this determination is
direct; for the other rows this is indirect, via their use in defining the ultrafilters
Us,τγ from which the sets As,τα are taken.

The tableau zs,τ . The third component zs,τ of spτq is a tableau having the
form represented in Figure 1. It contains, for each pair pγ, νq of ordinals with
τ ě γ ě γ0 ą ν ě 0, a function fzγ,ν , and for each pair pγ, νq with τ ě γ ą
ν ě γ0, a pair of functions pazγ,ν , f

z
γ,νq. The function fzγ,ν or pair of functions

pazγ,ν , f
z
γ,νq will ultimately be used to determine the values of the Cohen function

hγ,ν . The elements in the first row will be used to directly determine hτ,ν ; while
elements in a row labeled γ ă τ will be used indirectly to determine hγ,ν by
being used in the definition of the ultrafilter Us,τγ .

The domain of the function fzγ,ν is contained in the interval rκ̄zτ , pκ̄
z
τ q
`q and

is of size at most κ̄zτ . This is a standard Cohen condition for a function from
pκ̄zτ q

` into κ̄zτ , except that it takes values of two different forms:

1. fzγ,νpξq “ ξ1 P κ̄zτ , and

2. fzγ,νpξq “ hγ1,νpξ
1q for some γ1 in the interval γ ą γ1 ą ν and ξ1 P κ̄zτ

The first is the usual form for a Cohen condition and asserts that hγνpξq “ ζ 1.
More specifically, if s is a condition with zs,τ “ z and fzτ,γpξq “ ξ1, then s ,
9hτ,γpξq “ ξ1. In the second form, the value hγ1,νpξ

1q, of fpξq may be taken as a

formal expression. In this case the value of the name 9hpξq is defined by

if s , 9hτ,νpξ
1q “ ξ2 then s , 9hτ,νpξq “ ξ2,

if s , ξ1 R domainp 9hγ1,νq then s , 9hτ,νpξq “ 0,

and otherwise s ∦ 9hτ,νpξq.

This definition uses recursion on τ , since s , 9hγ1,νpξ
1q “ ξ2 depends only on

sæγ1 ` 1. In the first of these three cases, s , 9hγ1,νpξ
1q “ ξ2, we will regard the

forms fzτ,νpξq “ ξ2 and fzτ,νpξq “ hγ1,νpξ
1q as being identical.
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The domain of the function as,τγ,ν is also a subset of the interval rκ̄τ , κ̄
`
τ q of

size at most κ̄τ , but it is disjoint from the domain of fs,τγ,ν . The range of as,τγ,ν is
a subset of supppF s,τν q. The intention is that if as,ττ,νpξq “ α, then hτ,νpξq will be

a Prikry indiscernible for the ultrafilter pF s,τν qα “ tx P Ppκ̄q | α P iF
s,τ
ν pxq u.

Although we usually regard as,τγ,ν as simply a function, it requires a moder-
ately complicated bookkeeping structure.

Definition 4.3. We put the following requirements on these functions:

1. The domains of as,τγ,ν and fs,τγ,ν are disjoint.

2. The domain of as,τγ,ν is equipped with a layering, which we write as azγ,ν “
Ť

λăκγ
azγ,ν |λ. This layering satisfies (i)

ˇ

ˇpazγ,ν |λq
ˇ

ˇ ď λ for each cardinal

λ ă κz such that s does not force κ̄ν “ λ, (ii) azγ,ν |λ Ď azγ,ν |λ
1 whenever

λ ă λ1, and (iii) azγ,ν |λ “
Ť

λ1ăλ a
z
γ |λ

1 for limit cardinals λ ă κ̄τ .

3. If τ ě γ ą γ1 ą ν then as,τγ,ν Ď as,τγ1,ν .

For ease of referring to this structure, we will use the following definition:

Definition 4.4. If s is a condition, with τ P domainpsq, then the pattern of a
function as,τγ,ν in zs,t comprises the following elements: (i) the domain of as,τγ,ν ,
(ii) the layering of its domain, and (iii) the preordering ď on the domain of as,τγ,ν
defined by ξ ď ξ1 if as,τγ,νpξq ď as,τγ,νpξ

1q.
The pattern of a column x as,τγ,ν | τ ě γ ą ν y from the tableau comprises the

pattern of each member of the column.
We will occasionally speak of the pattern of a condition s, or of other related

objects. This will mean the collection containing the pattern of each column in
the associated tableau or tableaux.

This completes the definition of the tableau zs,τ . Before continuing with
the definition of the sequence ~As,τ , we make some some general remarks on the
reasons for the design of the tableau, and the design of the forcing in general.
An important aim is to ensure that the forcing produces Prikry indiscernibles
for the ultrafilters pF s,τν qα of the extender on κ̄τ , but that no information about
the association between these indiscernibles and the ordinal α is included in
the model MBrGs. The forcing involves three techniques to arrange this, two
of which have already been touched on: (i) The mixture of Cohen forcing and
Prikry forcing gives a background in which in which the Prikry forcing is hidden,
so that there is no way to distinguish values hδ,νpξq coming from Prikry forcing
from those which come from Cohen forcing. (ii) The use of the function as,τγ,νpξq
in the condition, instead of its value α, ties the Prikry indiscernible to the
essentially arbitrary ordinal ξ P rκ̄s,τγ , pκ̄s,τγ q`q, thus avoiding any explicit tie
between the indiscernible and the ordinal α for which it is a Prikry indiscernible.
(iii) The equivalence relation Ø on P p~F q, which will be defined in Section 4.5,
will explicitly disassociate the Prikry indiscernible from the ordinal α.

To see why this disassociation is necessary, recall that the observation that
MBrGs is closed under countable sequences of ordinals used the claim that for
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every generator β “ iν1pβ̄
1q belonging to some κ̄ν “ κν1 P B, there is some

ξ P rκ, κ`ω1q such that β “ hζ,νpiΩpξqq. If we used generic subset G of the un-

modified forcing P p ~Eæζq, rather than generating a generic subset of P p ~Eæζq{Ø,
then the only generators of κγ for which we would have names hζ,γpiΩpξqq would
be those in

Ť

νăζ iγrsupppEνqs. By enforcing the disassociation, we make it pos-
sible to modify the conditions to give such names to all generators.

The sets As,τγ . We have finished the definition of the conditions s P P p~F q
except for characterization of the sets As,τγ and the ultrafilters Us,τγ of which
they are members.

For convenience, we write P˚τ for the set of quadruples which are possible
values of spτq. In Section 4.2 we will define an order ď˚ on the sets P˚τ which

will induce the direct order ď˚ on P p~F q. In the rest of this section we assume,
as a recursion hypothesis, that this order has already been defined on all P˚γ for
γ ă τ .

The members of As,τγ are members of P˚γ with some additional information.
Specifically, As,τγ Ď P˚γ,τ where

Definition 4.5. The members of P˚γ,τ are quadruples

w “ pκ̄wγ , ~F
w, zw, ~Awq

satisfying the following conditions:

1. κ̄wγ and ~Fw are as described above for P˚γ .

2. zw has the form of the tableau in Figure 2.

3. If τ ě ν ě γ ` 1 ą ν1 ě γ0, then az
w

ν,ν1 is a function with a domain which

has size κ̄w and is contained in rκ̄w, pκ̄wq`q, and with range contained in
Ωz supppFγq.

4. pκ̄wγ ,
~Fw, zwærγ0, γq, ~A

wq P P˚γ , where zwærγ0, γq is the restriction of z to
the rows with indices in the interval rγ0, γq, that is, those below the line
in Figure 2.

If w1, w P P˚γ,τ then w1 ď˚ w if

1. pκ̄w
1

γ ,
~Fw

1

, zw
1

ærγ0, γq, ~A
w1q ď˚ pκ̄wγ ,

~Fw, zwærγ0, γq, ~A
wq in P˚γ , and

2. If τ ě ν ě γ ` 1 ą ν1 ě γ0, then az
w1

ν,ν1 Ě az
w

ν,ν1 .

We are now ready to finish the finish the definition of the sets P˚τ , and hence

of the set of conditions of the forcing P p~F q, by defining ultrafilters Us,τγ on
subsets of P˚γ,τ :

Definition 4.6. Us,τγ is the ultrafilter on subsets of P˚γ,τ defined by

x P Us,τγ ðñ spτqÒγ P iFγ pxq. (1)
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0 ¨ ¨ ¨ γ0 ´ 1 γ0 ¨ ¨ ¨ γ

τ azτ,γ0
. . . azτ,γ

...
...

...

γ ` 1 azγ`1,γ0
. . . azγ`1,γ

γ fzγ,0 . . . fzγ,γ0´1 pazγ,γ0
, fzγ,γ0

q . . .
...

...
...

...

γ0 ` 1 fzγ0`1,0 . . . fzγ0`1,γ0´1 pazγ0`1,γ0
, fz1,γ0

q

γ0 fzγ0,0 . . . fzγ0,γ0´1

Figure 2: The third component zw of a member of As,τγ . The entry in row α
and column β is used in the determination of hα,β .

Here spτqÒγ is a member of P˚γ,τ obtained by restricting spτq P P˚τ as follows:

spτqÒγ “ pκ̄s,τ , ~F s,τæγ, pzs,τ q˚γ , ~As,τÒγq, (2)

where

1. pzs,τ q˚γ is a tableau as in Figure 2 which is obtained from zs,τ by deleting
all columns with index larger than γ, and retaining only the functions azν,ν1
from the rows with index ν ą γ, and

2. ~As,τÒγ “ x twæγ | w P As,τγ1 u | γ
1 ă γ y, wæγ “ pκ̄w, ~Fw, zwærγ0, γq, ~A

wq.

Definition 4.7. The set P˚τ is the set of quadruples t “ pκ̄t, ~F t, zt, ~Atq satisfy-
ing the following conditions:

1. κ̄t, ~F t and zt are as specified above.

2. ~At “ xAtγ | γ0 ď γ ă τ y, where Atγ P U
t
γ .

3. If w P Atγ and γ1 ă γ, then

Awγ1 “ tw
1ærγ0, γq | w

1 P Atγ1 & κ̄w
1

ă κ̄w

& @ν, ν1 pγ0 ď ν ď γ ă ν1 ď τ ùñ aw
1

ν1,ν “ awν1,νq u.

We remark that clause (3) of Definition 4.7 is included here only for con-
venience, as omitting it would give an equivalent forcing. In the next subsec-
tion, we will implicitly add more such regularizing conditions when we define
addps, wq, as any w P As,τγ for which addps, wq is undefined has no effect.

This completes the definition of the set of conditions for the forcing P p~F q.
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4.2 The partial orders of P p~F q.

Since P p~F q is a Prikry type forcing notion, we need to define both a direct
extension order ď˚ and a forcing order ď. We will begin by defining the one-
step extension, addps, wq ď s, which which is the basic extension adding a single
new ordinal to the domain of s. We will then define the direct extension ď˚.
The forcing extension ď is then the smallest transitive relation which contains
ď˚ such that addps, wq ď s whenever w P As,τγ for some τ P domainpsq and
γ ă τ .

The one-step extension The one-step extension in this forcing is corre-
sponds to the extension in Prikry forcing which simply adds one new ordinal
to the finite sequence. If w P As,τγ then addps, wq is the weakest extension
of s which has γ in its domain; that is, if t ď s and γ P domainptq, then
t ď addps, wq ă s for some w P As,τγ . The first definition uses the portion of the
tableau of Figure 2 lying above the line to resolve the corresponding functions
as,τν,ν1 of s to Cohen conditions:

Definition 4.8. Suppose that w P As,τγ and τ ě ν ą γ ě ν1 ě γ0; and write
a “ as,τν,ν1 and a1 “ awν,ν1 . Assume that a1 has same pattern as a|κ̄wγ , so in
particular otppdomainpa1qq “ otppdomainpa|κ̄wγ qq. Then the Cohen condition
fa,a1 determined by a and a1 is defined as follows:

Let ξ P domainpaq be arbitrary, let β be such that ξ is the βth member of
domainpaq, and if ξ P domainpa|κ̄wγ q then let ξ1 be the βth member of domainpa1q.
Then

fa,a1pξq “

$

’

&

’

%

a1pξ1q if ξ P domainpa|κ̄wγ q and γ “ ν1,

hγ,ν1pξ
1q if ξ P domainpa|κ̄wγ q and γ ą ν1,

0 if ξ P domainpaqzdomainpa|κ̄wγ q.

(3)

The second case uses the second form of the value of a Cohen condition;
because of the requirement that as,τν,ν1 Ď as,τγ,ν1 , the ultimate value of hν,ν1pξq can
still be regarded as a Prikry indiscernible for α. This corresponds to Magidor’s
generalization of Prikry forcing in [Mag78].

Now we are ready define the one-step extension s1 “ addps, wq.

Definition 4.9. Suppose that w P As,τγ where τ “ minpdomainpsqzγq. Then
s1 “ addps, wq is the condition with domainps1q “ domainpsq Y tγu defined as
follows:

First, s1æ domainpsqztτ, γu “ sæ domainpsqztτu; thus, only s1pγq and s1pτq
remain to be defined. As before, let γ0 “ maxpdomainpsq X τq ` 1, or γ0 “ 0

if γ is the least member of domainpsq. Fix w “ pκ̄w, ~Fw, zw, ~Awq P As,τγ . The
value s1pγq is specified by w:

s1pγq “ pκ̄wγ , ~F
w, zwæ rγ0, γs, ~A

wq.

Finally, the definition of s1pτq is by recursion over the pairs pτ, γq: We set

s1pτq “ pκ̄s
1

, ~F τ,s
1

, zs
1,τ , ~As

1,τ q, where
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1. κ̄s
1

τ “ κ̄sτ and ~F s
1,τ “ ~F s,τærγ ` 1, τq,

2. zs
1,τ is obtained from zs,τæpγ, τ s by setting fs

1,τ
ν,ν1 “ fs,τν,ν1 Y fa,a1 , using

Definition 4.8, whenever τ ě ν ą γ ě ν1 ě γ0, and

3. If γ ă ν ă τ , then

As
1,τ
ν “ tσpw1q | w1 P As,τν ^ κ̄wγ ă κ̄w

1

ν u (4)

where the function σ is defined by

σpw1qæpγ, νs “ addpw1æpγ, νs, wÒνq, and

σpw1qæpν, τ s “ w1æpν, τ s.

Clause (3) uses the recursion, and abuses notation by identifying the quadru-

ple w1æpγ, νs P P˚ν with the condition tpν, w1æpγ, νsqu P P p~Fw
1

æpγ, νsq having
domain tνu.

If any part of the definition of addps, wq cannot be carried out as described,
then addps, wq is left undefined. Note that the set of w for which it is defined is a
member of Us,τγ , so that we can assume without loss of generality that addps, wq
is defined for every w P As,τγ .

The direct extension order. This completes the definition of the one-step
extension, and we complete the definition of the forcing P p~F q by defining the
direct extension ordering, ď˚. This is just the cartesian product of orderings
defined on the sets Pγ :

Definition 4.10. We will define an order ď˚ on P˚τ ; the order on P p~F q is then
defined by

s1 ď˚ s ðñ domainps1q “ domainpsq ^ @γ P domainpsq s1pγq ď˚ spγq.

The definition of the order ď˚ on P˚τ uses recursion on τ : we assume that
the relation ď˚ on P˚τ 1 has been defined for all τ 1 ă τ . Then for any t1 “

pκ̄t
1

, ~F t
1

, zt
1

, ~At
1

q and t “ pκ̄t, ~F t, zt, ~Atq in P˚pτq we say that t1 ď˚ t if the
following conditions are satisfied.

1. κ̄t
1

“ κ̄t and ~F t
1

“ ~F t.

2. at
1

γ,γ1æ domainpatγ,γ1q “ atγ,γ1 for each pair pγ, γ1q for which they are defined,

and the induced pattern on t at
1

γ,γ1ædomainpatγ,γ1q | τ ě γ ą γ1 ą γ0 u is
the same as that of t as,τγ,γ1 | τ ě γ ą γ1 ą γ0 u.

3. For each γ P rγ0, τq and each w1 P At
1

γ there is w P Atγ such that

(a) w1ærγ0, γs ď
˚ wærγ0, γs in P˚γ .

(b) aw
1

ν,ν1 Ě awν,ν1 for all pairs pν, ν1q such that τ ě ν ą γ ě ν1 ě γ0, with
the pattern being preserved as in clause (2) above.
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(c) For all pairs pν, ν1q with τ ě ν ą ν1 ě γ0, if f 1 and f are the functions
induced, using Definition 4.8, by the pair pat

1

ν,ν1 , a
w1

ν,ν1q and the pair

patν,ν1 , a
w,
ν,ν1q respectively, then f “ f 1æ domainpatν,ν1q.

4. f t
1

ν,ν1ædomainpf tν,ν1q “ f tν,ν1 for each pair ν, ν1 for which they are defined.

The clauses (3b) and (3c) assert that addps1, w1qpτq ď˚ addps, wqpτq. Clause (3)
adapts the requirement As

1

Ď As from Prikry forcing to deal with he compli-
cation that Us,τγ “ Us

1,τ
γ : it extends the ordering ď˚ on P˚γ to P˚γ,τ and then

asserts that As
1,τ
γ Ď tw1 | Dw P As,τγ w1 ď˚ w u.

In Gitik’s forcing, this corresponds to his use, in the definition of the direct
order, of a predetermined set of witnesses παs1 ,αs to the fact that Uαs1 ďrk Usα
where the ultrafilters Uα come from a predetermined sequence of ultrafilters.

This completes the definition of the forcing pP p~F q,ď˚,ďq.

4.3 Properties of the forcing P p~F q

Definition 4.11. If ~w is a sequence of length n, then we write addps, ~wq for
the condition defined by recursion as addps, ~wq “ s if n “ 0, and addps, ~wq “
addpaddps, ~wæpn´ 1qq, wn´1q if n ą 0.

Proposition 4.12. Suppose that s ď t. Then there is ~w such that s ď˚

addpt, ~wq ď t

Proof. The proposition will follow by induction on |domainptqzdomainpsq| once
we show that for any t1 and w1 P At

1

γ such that s “ addpt1, w1q ď t1 ď˚ t,
there is some w P Atγ such that s ď˚ addpt, wq ă t. Let w P Atγ be as given
by Clause 3 of the Definition 4.10. Then s ď˚ addpt, wq, for by Clause 3a,
spγq ď˚ addpt, wqpγq, by clauses 3b,c and 4 we have spτq ď˚ addps, w̄qpτq, and
for all γ1 P domainps1qztτ, γu we have tpγ1q ď˚ s1pγ1q “ s1pγ1q.

Proposition 4.13. Suppose t ď s and γ P domainptqzdomainpsq, and let τ “
minpdomainpsqzγq. Then there is w P As,τγ such that t ď addps, wq ă s.

Proof. By Proposition 4.12, there is a sequence ~w so that t ď˚ addps, ~wq ď s.
Thus it only remains to show that the order of the extension addps, ~wq can
be permuted, that is, that there is ~w1 such that addps, ~wq “ addps, ~w1q and
w10 P A

s,τ
γ , in which case w “ w10 satisfies the proposition. This will follow

by an easy induction once we show that the order of two consecutive one-step
extensions can be reversed.

Suppose then that t “ addpaddps, wq, vq, with w P As,τγw adding γw to the
domain of s, and v then adding γv to the domain of addps, wq. We want to
show that there are w1 and v1, adding γw and γv respectively, so that t “
addpaddps, v1q, w1q. We can assume that γw and γv are not separated by a
member of domainpsq, that is, (using the notation from Definition 4.9) γ0 ď

γw, γv ă τ , for otherwise we have addpaddps, wq, vq “ addpaddps, vq, wq.
This is the purpose of including Clause (3) of Definition 4.7. In the case that

γw ă γv, we take w1 as in that clause, and v1 “ σpvq where the function σ is
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from Clause (3) of the Definition 4.9 of addps, wq; conversely, in the case that
γv ă γw, we take v1 so that v “ σpv1q and w1 “ u P As,τγw so that w “ u1.

Proposition 4.14. 1. If t P pP˚γ ,ď
˚q, then pP˚γ }t,ď

˚q is ăκ̄t-closed.

2. The order pP p~F q,ď˚q is countably closed.

3. If s P P p~F q with γ “ minpdomainpsqq then pP p~F q}s,ď
˚q is κ̄s,γ-closed.

4. If s P P p~F q and γ P domainpsq with γ ă ζ then

P p~F q}s – P p~F s,γq}sæpγ`1q ˆR

where pR,ď˚Rq is p2|P p
~F s,γq|q`-closed.

Here we write P p~F q}s for t s1 P P p~F q | s1 ď s u.

Proof. Clauses 2 and 3 will follow immediately from Clause 1, and Clause 4
follows from Clause 1 together with Proposition 4.13. The proof of Clause 1
is by induction on lengthp~F q: suppose that xwν | ν ă θ y is a ď˚-descending

sequence of length θ ă κ̄w0 in P˚p~F q. We want to show that there is an infinum

wθ “
Ź

νăθ wν of this sequence in P˚p~F q. The only problematic element of the
definition of wθ is the definition of the sets Awθγ . We set

v P Awθγ ðñ κ̄v ą θ & D~v “ x vν | ν ă γ y pv “
ľ

νăθ

vν

& @ν ă γ vν P A
wν
γ & @pν, ν1q pν1 ă ν ă γ ùñ wν1 ď

˚ wνqq.

To see that this works, we need to verify that Awθγ P Uwθγ for each γ ă lengthp~F q.

But this is the induction hypothesis: we have w˚γθ “
Ź

νăθ w
˚γ
ν for each γ ă

lengthp~F q.

The factorization asserted in Clause(4) is a general fact about Prikry-type
forcings in the line of Magidor’s [Mag78]. This, together with the observation

that The forcing R in Clause (4) is the product of P p~Fæpγ, ζqq}særγ`1,ζs with the
forcing order for adding additional Cohen subsets of cardinals larger than κ̄γ , is

frequently useful: In order to prove a property of an arbitrary condition s P P p~F q
it is sufficient to prove it for conditions whose domain is a singleton, provided
that it holds of the Cohen forcing and is preserved under finite products.

The next lemma extends Lemma 4.14 to allow diagonal intersections of
length κ̄t:

Clause (4) will frequently allow us to simplify a proof by considering only
conditions s with domainpsq “ tζu: suppose we are trying to prove a property

of s and P p~F q}s, and the property is true of κ̄ζ-closed forcing and is preserved
under products. If we can show that the property holds for the case domainpsq “
tζu then it follows by induction that it is true in general: Apply Clause (4) to
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write P p~F q “ P p~F s,γq}sæpγ`1q ˆ R. Then by our assumptions the property

holds of R, but by the induction hypothesis it also holds of P p~F s,γq}sæpγ`1q and

sæγ ` 1, so it follows that it holds of s and P p~F q}s.

Lemma 4.15. Suppose that s is a condition in P p~F q, γ ă τ “ minpdomainpsqq,

and that D is a subset of P p~F q which is open dense in pP p~F q,ď˚q below addps, wq
for all w P As,τγ . Then there is a s1 ď˚ s such that s2 P D for all s2 ď s1 with
γ P domainps2q.

Proof. By Proposition 4.13 it will be enough to show that there is s1 ď˚ s such
that addps1, wq P D for all w P As

1,τ
γ , and by Proposition 4.14(4) we can assume

that τ “ suppdomainpsqq.
We will construct s1 in two steps. The first step will find sκ̄τ ď

˚ s and
a function σ : As,τγ Ñ P˚γ such that addpsκ̄τ , σpwqq P D for each w P As,τγ ,

with an abuse of notation since σpwq R A
sκ̄τ ,τ
γ . The second step will use the

function σ to modify sκ̄τ to s1 ď˚ s with As
1,τ
γ “ tσpwq | w P As,τγ u such that

addps1, σpwqq “ addpsκ̄τ , σpwqq for all w P As,τγ .

Enumerate As,τγ as twν | ν ă κ̄s u so that ν1 ď ν implies κ̄
wν1
γ ď κ̄wνγ . We

will define a ď˚-decreasing sequence of conditions x sν | ν ď κ y in R, along with
the function σ, having the following properties:

1. s0 “ s, and sν “
Ź

ν1ăν sν1 if ν ď κ̄sτ is a limit ordinal.

2. If η ď γ then fsν ,τη,η1 “ fs,τη,η1 and Asν ,τη “ As,τη , furthermore asν ,τη,η1 “ as,τη,η1 for
all η1 ď γ.

3. If η ą γ then tw P Asν ,τη | κ̄w ď κ̄wν u Ă A
sν`1,τ
η and a

sν`1,τ
η,η1 |κ̄wν “

asν ,τη,η1 |κ̄
wν for all ν ă κ̄sτ .

4. a
σpwνq
η,η1 “ awνη,η1 for all η and η1 such that ζ ě η ą γ ě η1.

5. addpsν`1, σpwνqq P D.

Clause(2) implies that Usν ,τγ “ Us,τγ for all ν ď κ̄sτ , and with Clause (3)
implies that the limits in Clause (1) exist.

To define sν`1 and σpwνq, note that addpsν , wνq ď
˚ addps, wνq, and there-

fore the hypothesis implies that there is t ď˚ addpsν , wνq such that t P D. Fix
such a condition t, and define

σpwνqærγ0, γs “ tpγq

σpwνqæpγ, ζs “ wνæpγ, ζs.

Extend sν to sν`1 by setting

f
sν`1,τ
η,η1 “ fsν ,τη,η1 Y f

t,τ
η,η1æpdomainpf t,τη,η1qzdomainpfsν ,τη,η1 Y a

sν ,τ
η,η1 qq

Asν`1,τ
η “ At,τη Y tw P Asν ,τη | κ̄w ď κ̄wν u
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for all η ą γ, leaving all other components of sν unchanged as required by
clauses (2)–(4).

Then Clauses (3) and (2) hold automatically, since the elements required
to be held constant do not exist in addpsν , σpwνqq. Clause (5) holds since
addpsν`1, σpwνqq “ addpt, σpwνqq.

This completes the definition of sκ̄sτ , and in order to extend it to s1 let

s̄ “ rσsUs,ζγ “ iFγ pσqpspτqÒγq. (5)

and set

As
1,τ
η “

#

As̄,τη for η ă γ and

σrAs,τγ s for η “ γ, and

fs
1,τ
η,η1 “ f s̄,τη,η1 , and as

1,τ
η,η1 “ as̄,τη,η1 for η ď γ.

Then s1 ď˚ s, and if w “ σpw1q P As
1,τ
γ then addps1, wq ď˚ addpsν , σpw

1qq P

D.

4.4 The Prikry property

Lemma 4.16. 1. Let ϕ be a sentence and s a condition in P p~F q. Then there
is an s1 ď˚ s such that s1 decides ϕ.

2. Let D be a dense subset of P p~F q, and suppose s P P p~F q. Then there is an
s1 ď˚ s and a finite b Ď ζ ` 1 such that any s2 ď s1 with b Ď domainps2q
is a member of D.

Proof of Lemma 4.16. z In order to simplify notation, we assume that domainpsq “
tζu. The full result then follows by an induction using Proposition 4.14. The
proof is by induction on ζ: we assume as an induction hypothesis that the
lemma is true of ~Fæζ 1 for all ζ 1 ă ζ.

The main part is the proof of the following claim:

Claim 4.16.1. Suppose that D Ď P p~F q is dense and s P P p~F q with domainpsq “
tζu. Then there is s1 ď˚ s such that either s1 P D or for some γ ă ζ

s1 ,P p~F q pDw P A
s1,ζ
γ q

`

addps1, wq P 9G^

addps1, wqæpγ ` 1q ,P p~Fwq pDt P
9GP p

~Fwqq ptY paddps1, wqætζuqq P D
˘

. (6)

Proof of Claim 4.16.1. If there is s1 P D such that s1 ď˚ s then we are done, so
we can assume that there is no such s1. For each γ ă ζ, define

D`γ “ t t P P p
~F q | t , pDt1 P 9GXDq domainpt1q Ď pγ ` 1q Y tζu u

D´γ “ t t P P p
~F q | t ,  pDt1 P 9GXDq domainpt1q Ď pγ ` 1q Y tζu u

Eγ “ t t P P p~F q | @t
1 ď tppt1 P D ^ domainpt1q Ď pγ ` 1q Y tζuq

ùñ t1æpγ ` 1q Y tætζu P Dq u.
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It will be enough to show that for all γ ă ζ the set pD`γ Y D´γ q X Eγ is
ď˚-dense below any condition with domain tγ, ζu, for if we can do so then by
Lemma 4.15 there is s1 ď˚ σ such that for each γ ă ζ and w P As

1,ζ
γ , we have

addps, wq P pD`γ YD´γ q X Eγ . By shrinking the sets As
1,ζ
γ we can assume that

for each γ, t addps1, wq | w P As
1,ζ
γ u is contained in one of D`γ XEγ or D´γ XEγ .

Since D is dense it follows that t addps1, wq | w P As
1,ζ
γ u Ď D`γ for some γ ă ζ,

and it follows by Proposition 4.14(3) that s1 satisfies the formula (6).

To see that pD`γ Y D´γ q X Eγ is ď˚-dense below any t P P p~F q with γ P
domainptq, first note that by Proposition 4.14(3), the set Eγ is ď˚-dense be-
low any condition t with γ P domainptq. Now for any t P Eγ , the induction

hypothesis asserts that there is t1 ď˚ tæpγ ` 1q in P p~F t,γq such that

t1 ‖P p~F t,γq pDt
2 P 9Gq t2 Y tætγu P D.

Then t1 Y tætζu is in either D`γ or in D´γ .

We now apply Claim 4.16.1 to complete the proof of Lemma 4.16. For the
first clause, let D be the set of conditions t such that t ‖ ϕ. If there is s1 ď˚ s
in D then we are done, so by Claim 4.16.1 we can assume that there is s1 ď˚ s
and γ ă ζ such that for all w P As

1,ζ
γ

addps1, wq ,
`

Dt P 9GXD pdomainptq Ď pγ ` 1Y tζuq ^ tpζq “ addps1, wqpζq
˘

.

By the induction hypothesis, it follows that there is tw ď
˚ addps1, wqæpγ ` 1q

in P p~Fwq such that tw Y addps1, wqsætζu ‖ ϕ. By shrinking As
1,ζ
γ if necessary,

we can assume that ϕ is decided the same way by tw Y addps1, wqætζu for every
w P Aw,s

1

γ . Then s1 ď˚ s decides ϕ.
The second clause of Lemma 4.16 is proved similarly, using the given dense

set D.

Corollary 4.17. Suppose that 9x is a P p~F q-name for a subset of λ, γ ď ζ, and
s is a condition with γ P domainpsq such that λ ă κ̄sγ . Then there is s1 ď˚ s

such that s1 , 9x PM rt tæγ | t P 9G us.

Proof. By Proposition 4.14 we can factor P p~F q}s as P p~Fæγq}sæγ ˆ R. By the
remark following Proposition 4.14, Theorem 4.16 holds of R, and since pR,ď˚q

is |λˆ P p~Fæγq}sæγ |-closed the conclusion follows.

Corollary 4.18. Forcing with P p~F q does not collapse any cardinal λ which is
not in the set

Ť

γďζrκ̄
``
γ , κ̄`ω1

γ q.

Proof. Suppose that s is a condition which forces that |λ| “ λ1 ă κ̄γ . Then by
Corollary 4.17 it follows that sæpγ ` 1q ,P p~F s,γq |λ| “ λ1. Thus we can assume

without loss of generality that λ ą κ “ κ̄ζ . Furthermore, since |P p~F q| ă κ`ω1

we can assume that λ ă κ`ω1 .
Now λ P pκ, κ`ω1q, so it only remains to show that κ` is not collapsed. To

see this, let 9f be the name of a function f : κÑ κ`.
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For each γ ă ζ, let Dγ be the set of conditions t with γ P domainptq such
whenever ξ ă κ̄tγ , t1 ď t, and domainpt1q Ď domainptqYpγ`1q, if there is α such

that t1 , 9fpξq “ α, then t1æpγ ` 1q Y tæpγ, δs , 9fpξq “ α. By Lemma 4.14 the
sets Dγ are open and ď˚-dense below any condition t with γ P domainptq. By
Lemma 4.15, then, there is s2 ď˚ s1 such that addps2, wq P Dγ for any γ ă ζ.
Then rangepfq is contained in tα | Dt ď s2 | tærγ, ζs “ s2ærγ, ζs u, which is a set
in the ground model of size κ.

In the forcing of Gitik from which this forcing is derived, a preliminary forc-
ing is used to define a morass-like structure which guides the main forcing so
as to prevent any collapse. The preliminary forcing is omitted here as unneces-
sary to the present purpose; however as a consequence we do not know whether
the cardinals of MΩ in pκ`, κ`ω1q which are excepted in Lemma 4.18 remain
cardinals in the Chang model. However this is not a significant question with
the present choice of the model M : the cardinals in question can be expected
actual indiscernibles for the Chang model.

4.5 Introducing the equivalence relation

We now proceed to the second part of the definition of the forcing by introducing
a variant of Gitik’s equivalence relation Ø on P p~F q, which is based on the
following equivalence relation on rsupppFγqs

κ̄γ :

Definition 4.19. Suppose that ~F is a suitable sequence of extenders of length
at least γ` 1 on a cardinal λ, and b, b1 Ă rsupppFγqs

λ. Then bØ0 b
1 if otppbq “

otppb1q and, setting Y “
Ť

νăγ supppFνq, we have bX Y “ b1 X Y and FγþpY Y
bq “ FγþpY Y b1q.

If n ě 0 then we say bØn`1 b
1 if for all c Ě b in rsupppFγqs

λ there is c1 Ě b1

in rsupppFγqs
λ such that c Øn c

1, and for all c1 Ě b1 there is c Ě b such that
cØn c

1.

Definition 4.20. We write N for the set of sequences ~n P ζω such that t ι ă
ζ | nι ă m u is finite for each m P ω.

If ~a and ~a1 are arrays of Prikry functions as in Tableau 1 and ~n P N , then
we say ~aØ~n ~a

1 if the patterns of ~a and ~a1 are the same, and rangepaγ`1,γq Ønγ

rangepa1γ`1,γq for all γ such that these functions appear in the tableau.
We say that ~aØ ~a1 if ~aØ~n ~a

1 for some ~n P N .

Note that aγ`1,γ , together with the pattern of ~a, determines the rest of the
column x aν,γ | τ ě ν ą γ y.

Definition 4.21. The extension of the relation Ø~n to members of P˚γ and P˚η,γ
is by recursion on γ. Assume that Ø~n has already been defined on P˚η,γ1 and
P˚γ1 for all γ1 ă γ. For w,w1 P P˚η,γ we say

w Ø~n w
1 ðñ

´

wærγ0, ηs Ø~n w
1ærγ0, ηs & p@µ ą η ě µ1q awµ,µ1 “ aw

1

µ,µ1

¯

,
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where wærγ0, ηs and w1ærγ0, ηs are being compared as members of P˚η .
For t, t1 P P˚γ , we say tØ~n t

1 if and only if the following four conditions are
satisfied:

1. κ̄t “ κ̄t
1

, ~F t “ ~F t
1

.

2. f tν,ν1 “ f t
1

ν,ν1 for all ν, ν1 for which they are defined.

3. ~at Ø~n ~a
t1 .

4. t rwsØ~n
| w P Atη u “ t rwsØ~n

| w P At
1

η u for all η ă γ.

Finally, if s, s1 P P p~F q then sØ~n s
1 if domainpsq “ domainps1q and spγq Ø~n

s1pγq for all γ in the common domain.
In all cases we say that Ø holds if there is some ~n P N such that Ø~n holds.

It is easy to see thatØ is an equivalence relation. As was pointed out earlier,
its purpose is to disassociate the Prikry indiscernible hν,ν1pξq “ fa,a1pξq from
any particular choice of the ordinal apξq for which it is an indiscernible.

Proposition 4.22. Suppose that s Ø s1, w P As,τγ , w1 P As
1,τ
γ and w Ø w1.

Then f
addps,wq,τ
η,η1 “ f

addps1,w1q,τ
η,η1 for all τ P domainpsq and γ0 ď η1 ă η ď τ .

Proof. This is immediate from the definition except in the case that η ą γ ě η1.
If η1 “ γ then it follows from the requirement if Definition 4.21that awη,η1 “ aw

1

η,η1 .
For η1 ă γ also relies on the fact that fa,a1pξq “ hγ,η1pξ

1q, using the second form

of equation (3), and hence depends only on the domain of aw
1

γ,η1 , not (explicitly)
on its value.

Proposition 4.23. Suppose that addps, ~zq ď sØ~n t. Then there is ~w such that
addps, ~zq Ø~n addpt, ~wq ď t.

Proof. We show that this is true when ~z has length one. An induction will then
show that it is true in general. Thus suppose that z P As,τγ and addps, zq ď
s Ø~n t. By Definition 4.21(4) there is w P At,τγ such that z Ø~n w. Then
addpt, wqpγq “ wærγ0, γs Ø~n zærγ0, γs “ addps, zqpγq; and Proposition 4.22
implies that addpt, wqpτq Ø~n addps, zqpτq.

Since these are the only values of s and t which are changed, it follows that
addps, zq Ø~n addpt, wq.

Proposition 4.24. Suppose s1 ď˚ s Ø~n t, and that nν ą 0 for all ν R

domainpsq. Then there is t1 ď˚ t such that s1 Ø~m t1, where mν “ nν ´ 1
if nν ą 0, and mν “ 0 otherwise,

Proof. We will prove that the lemma is true for s1, s and t in P˚γ with the
assumption that nν ą 0 for all ν in the interval γ0 ď ν ă γ; this will imply that
it is true for s1, s and t in P p~F q. The proof is by induction on γ.

By the definition of ď˚ and Ø all of s1, s, t1 and t must agree on their values
of κ̄ and ~F , and f t

1

must be equal to fs
1

. This leaves the functions at
1

ν1,ν and
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sets At
1

ν to be defined. To define ~at
1

, pick for each ν in the interval γ0 ď ν ă γ
some b Ě at,γν`1,ν such that as

1

ν`1,ν Ømν b. This is possible by the definition of

Ømν`1. Now set at
1

ν`1,ν “ b and define at
1

ν1,ν for γ ě ν1 ą ν ` 1 by applying the

pattern of x as
1

ν1,ν | γ ě ν1 ą ν y.
Finally, set

At
1

ν “ tw
1 | Dw P Atν w

1 ď˚ w & Dv1 P As
1

ν w1 Ø~m v1 u.

To see that Āt
1

ν “ Ās
1

ν , observe that s1 ď˚ s implies that for all v1 P As
1

ν there
is v P Asν such that v1 ď˚ v. Then s Ø~n t implies that there is w in Atν such
that w Ø~n w

1, and the induction hypothesis implies that there is w1 ď˚ w with
w1 Ø~m v1.

Definition 4.25. We write rss for rssØ “ t t | s Ø t u. The ordering on

P p~F q{Ø is the least transitive relation such that rss ď rts whenever s ď t or
sØ t.

Proposition 4.26. Suppose rts “ rss and t1 ď t. Then there are s2 ď s and
t2 ď t1 such that rs2s “ rt2s.

Proof. Suppose that t Ø~n s. By using a further extension t2 “ addpt1, ~wq we
can arrange that t ν | nν “ 0 u Ď domainpt2q. By Proposition 4.12 there is ~z so
that t2 ď˚ addpt, ~zq ď t. By Proposition 4.23 it follows that there is ~w so that
addpt, ~zq Ø~n addps, ~wq ď s. Finally it follows by Proposition 4.24 that there is
s2 ď˚ addps, ~wq so that s2 Ø t2.

Proposition 4.27. Suppose that rts ď rss. Then there is a condition q ď s
such that rqs ď rts.

Proof. If rts ď rss then there is a sequence x t1, . . . , t2n y as in the first row of
the following equation:

t ď t1 t2 ď t3 ¨ ¨ ¨ t2n “ s

q q1
ď
Ø

ď
Ø (7)

We prove the proposition by induction on n. If n “ 0 then t “ s, so we can
assume that n ą 0. Then the induction hypothesis asserts that there is q1 as
shown in diagram (7), and then Proposition 4.26 implies that there is q as in
diagram (7).

Corollary 4.28. P p~F q is forcing equivalent to pP p~F q{Øq ˚ 9R where 9R is a

P p~F q{Ø-name for a partial order.

Corollary 4.29. Forcing with P p~F q{Ø does not collapse any cardinal which is
not in the set

Ť

γďζrκ̄
``
γ , κ̄`ω1

γ q.

Proof. By Corollary 4.18 this is true in the extension by P p~F q “ pP p~F q{Øq˚ 9R;

hence it is certainly true in the extension by P p~F q{Ø.
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4.6 Constructing a generic set

Much of the argument in this subsection is basically the same as Carmi Me-
rimovich’s first genericity construction in [Mer07, Theorem 5.1]. In order to
construct a MB-generic set we need to move outside of MB : we work in V rhs,

where h is a generic collapse of R onto ω1 so that |M rhs| “ ω
Mrhs
1 “ ω1. Since

this Levy collapse does not add countable sequences of ordinals, the Chang
model is unchanged, the ordering ď˚ of P p ~Næζq is still countably complete,
and M is still closed under countable sequences.

Before continuing, it may be useful to look briefly at the relation between
CMBrGs and the actual Chang model. Since MB is not transitive, the fact
that MB |Ω Ď V does not immediately imply that CMBrGs is isomorphic to a
submodel of C. The ultimate conclusion will be that this is true, but the proof
will be in the following Section 4.7 as part of the proof of the Main Lemma 3.11.
The only case in which this isomorphism is immediately clear, given the result
in this section asserting that MBrGs|Ω contains all of its countable subsets, is
the case B “ Bpδq “ xκα | α ă δ y: in this case MBrGs|Ω is transitive and it
follows that CMBrGs “ Cκδ . It is also easy to see that if B and B1 have the

same order type, then CMBrGs – CMB1 rG
1
s. If B is suitable, then the definition

of CB essentially says that it is equal to CMBrGs; however it is not immediately
clear what relationship CMBrGs may have to the Chang model itself. In the case
that B is limit suitable, it is not even immediately clear that CB is definable in
MBrGs.

The main result of the current section is the following lemma:

Lemma 4.30. Let h be a generic collapse of R onto ω1 with countable con-
ditions, and let B be a countable subset of I with otppBq “ ζ. Then there is,

in V rhs, an iΩpMBq-generic set G Ď iΩpP p ~Næζq{Øq such that every count-
able subset of MB is contained in MBrGs. Therefore, if B is suitable then
CMBrGs “ CB.

Proof. We define a partial order R. Our assumptions on M are sufficiently
generous that the definition of R can be made inside M , using xNξ XH

M
τ | ξ ă

ω1 y, for some sufficiently large cardinal τ of M , instead of xNξ | ξ ă ω1 y.

Definition 4.31. R “
Ť

ξăω1
Rξ, where Rξ is defined as follows: The mem-

bers of Rξ are the pairs prss, bq such that rss P P p ~Eæδq{Ø is a condition with
domainpsq “ tζu and b “ x bγ : γ ă ζ y where each bγ is a function in Nξ
satisfying the following three conditions:

1. domainpbγq “ domainpas,ζγ`1,γq for each γ ă ζ,

2. rangepbγq Ă rκ, κ
`ω1q for each γ ă ζ, and

3. x as,ζγ`1,γ | γ ă ζ y Ø b.

The ordering of R is ps1, b1q ď ps, bq if rs1s ď rss in P p~~Eæζq{Ø and b1γ Ě bγ for
all γ ă ζ.
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Clause(3) requires some further discussion, since b R Nγ . The following
definition gives a representation of the Øn-equivalence class of a which makes
sense in this context.

Definition 4.32. Fix γ ă ω1 and write S “
Ť

γ1ăγ supppEη1q. The the func-
tions tγ,n for n P ω are defined as follows:

1. If a P rsupppEqsκ then tγ,0paq “ t pβ, xq P S ˆ PpVκq | x P Epβ,aq u.

2. tγ,n`1paq is the set of triples pξ, y,Xq such that y Ď ξ ă κ` and for
some a1 “ tαι | ι ă ξ u Ď supppEq such that a “ tαι | ι P y u we have
tγ,npa

1q “ X.

Proposition 4.33. 1. If a P rsupppEγq
κ and γ ď ξ ă ω1 then ptγ,npaqq

Nγ “

ptγ,npaqq
Nξ “ ptγ,npaqq

M .

2. If a, a1 P rsupppEγqs
κ then aØn a

1 if and only if tγ,npaq “ tγ,pa
1q.

3. If a P rsupppEγqs
κ, tγ,n`1paq “ tγ,n`1pbq and b Ď b1 P rsupppEqsκ then

there is a1 such that a Ď a1 P rsupppEγqs
κ and tγ,npa

1q “ tγ,npb
1q.

Lemma 4.34. 1. t prss, bq | s P D u is dense in R for each ď˚-dense set

D Ď P p ~Eæζq in M .

2. Suppose ν ă ζ and η P rκ, κ`ω1q, and define bζ,ν by applying the pattern

of as,ζζ,ν to bν . Then t prss, bq | pη P rangepbζ,νqq u is dense in R.

Proof. To see that t prss, bq | s P D u is dense in R whenever D Ď P p ~Næζq is

ď˚-dense, let prss, bq P R be arbitrary. Let ~a “ x as,ζγ`1,γ | γ ă ζ y. We may
assume that aγ Ø1 bγ for each γ ă ζ; if not, then replace aγ with some a1γ
such that a1γ Ø0 aγ and a1γ Ø1 bγ . This is possible by the elementarity of the
structures Nξ, since bγ has the desired properties. This change only involves
finitely many of the functions aγ , so the condition obtained from s by making
this substitution is still in rss.

Now pick s1 ď˚ s in D. Because of the assumption we made on ~a, there is
b1 Ø as

1,ζ such that prs1s, b1q ď prss, bq.

The proof of clause 2 is similar. Fix prss, bq P R, making the same assumption
on s as before. Now fix ξ so that tb, ηu P Nξ and and extend b to b1 P Nξ by
setting b1νpαq “ η where α is chosen large enough so that it is not in the domain
of any function in s. Then there is ~a1 Ą ~a so that ~a1 Ø b1. Now extend s to s1,
choosing the pattern of x as

1,ζ
γ,ν | ζ ě γ ą ν y by including α in domainpas

1,ζ
γ,ν q for

all γ. Then α P domainpbζ,νq and hence η P rangepbζ,νq.

The ordering pP p ~Nq{Ø,ď˚q is not countably complete: it is easy to find
an infinite descending sequence of conditions x rsns | n ă ω y such that any
lower bound would require an ultrafilter concentrating on non-well founded sets
of ordinals. However the partial order R is countably complete due to the
guidance of the second coordinate b :
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Lemma 4.35. The partial order R is countably closed.

Proof. Suppose that x prsns, bnq | n ă ω y is a descending sequence in R. We
define a lower bound prsωs, bωq for this sequence. The definition of R determines

bω,ν “
Ť

năω bn,ν , and determines all of sω except for the functions asω,ζν`1,ν and

sets Asω,ζν .

Let us write an,ν for asn,ζν`1,ν . The domain and pattern of ~aω,ν is immediately
determined: domainpaω,νq “ domainpbω,νq “

Ť

năω domainpan,νq, and the pat-
tern of ~aω is determined by the requirement that the pattern of aω,νædomainpan,ν
is the same as the pattern of an,ν . Pick any ~n “ xnν | ν ă ζ y P N , and for each
ν ă ζ pick aω,ν P Nν so that

aω,νædomainpan,νq Økn,ν an,ν and aω,ν Ønν bω,ν

where kn,ν P N is chosen so that an,ν Økn,ν bn,ν . This is possible by Proposi-
tion 4.33 since bω,ν satisfies these conditions.

Now define the setsAsω,ζν as in the proof of Proposition 4.24. Then prsωs, bωq P
R and prsωs, bωq ď prsns, bnq for each n P ω.

We are now ready to construct the MB-generic subset G Ď iΩpP p ~Eæζq{Øq,
where ζ “ otppBq. To slightly simplify the notation, we will assume that
B “ Bpζq “ tκγ | γ ă ζ u, so that the constructed generic set will have κ̄γ “ κγ .
For an arbitrary set B there is an isomorphism πBpζq,B : MBpζq – MB , so that
if GBpζq is the constructed MBpζq-generic set then GB “ πBpζq,BrGBpζqs will be
the required MB-generic set.

Definition 4.36. To construct the set G Ď iΩpP p ~Eæζq{Øq, first construct a M -
generic set H Ă R in V rhs. This is possible by Lemma 4.35 since |M |V rhs “ ω1

and and ωM ĎM . Now for each prss, bq P H and each finite increasing sequence
x γi | i ă n y of ordinals γi ă ζ, define a sequence ~wps,~γq by setting

~wps,~γq “ x iγipw̄iq | i ă n y, where

w̄i “
´

κ, ~Eærγi´1, γiq, replpzs,ζærγi´1, γiq, aγi`1,γi , bγiq,
~Aærγi´1, γiq

¯

. (8)

Here we take γ´1 “ ´1, and we write replpz, aγ`1,γ , bγq for the tableau which
is identical to z except that azγ`1,γ is replaced by bγ , and hence each entry azν,γ
in the column above azγ`1,γ is replaced by bγæ domainpazν,γq. Finally, set

G “ t s1 | pDprss, bq P Hq D~γ addpiΩpsq, ~wps,~γqq ď s1 u (9)

Note that the effect of the replacement used in equation (8) is that a con-
dition addpiΩpsq, ~wq P G forces that hζ,γipiΩpξqq “ iγipbνpξqq for each ξ P

domainpas,ζζ,νq. By Proposition 4.34, it follows that every generator of MB will
be given a name of this form.

Our verification that G behaves as expected relies on a system of standard
names for members of MB and CMBrGs. Note that we use standard forcing
names even for members of MB .
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Definition 4.37. A standard forcing name for a generator β of MB is a term
hζ,γpiΩpξqq where γ P B, ξ P rκ, κ`qM and hGζ,γpξq “ β. This name is established

by a condition prss, bq P R if β “ iγpbpξqq and ξ P domainpas,ζζ,γq.
We extend this terminology to members of MB and members of C: a stan-

dard forcing name for x PMB is a term of the form iΩpfqp~βq where ~β is repre-
sented by a finite sequence of standard forcing names, and a standard name for
a set in C is one of the form t z P Cι | Cι |ù ϕpz, ~τq u where ι is represented by
a standard forcing name and ~τ is represented by a countable sequence of such
names.

Claim 4.37.1. G is an MB-generic subset of P piΩp ~Eæζqq.

Proof. The requirement that x as,ζζ,γ | γ ă ζ y Ø b implies that wip~s,~γq P iΩpA
s,ζ
γ q

and therefore addps, ~wps,~γqq ď iΩpsq, and it is straightforward to verify that the
members of G are compatible.

To verify that G is generic, let D be an arbitrary MB-generic subset of
iΩpP p ~Eæζq{Øq. Then D “ ipdqp~βq for a function d PM and sequence ~β “ xβi |
i ă n y of generators, say βi “ iγipβ̄iq. Thus there is a standard forcing name
ipdqpxhζ,γipiγipξiqq yq for D. Let prss, bq P H be a condition establishing this
name.

Since D is dense in iΩpP p ~Eæζq{Øq,

A “ t~ν | dp~νq is a dense subset of P p ~Eæζ{Øq u P
ź

iăn

Eγi
β̄i
,

so we may assume that A Ď
ś

iănA
s,ζ
γi .

Let D1 Ď P p ~Eæζ{Øq be the set of conditions rts such that rts , rts P
dpxhζ,γipξiq | i ă n yq. This is dense below rss, since rss , dpxhζ,γipξiq |
i ă n yq is dense. Then by Lemma 4.16(2), there is an s1 ď˚ s and a finite
c Ď ζ such that any t ď s1 with c Ď domainptq is in D1, and it follows that
add pips1q, ~wps1, cY ~γqq P D XG.

Claim 4.37.2. The model MBrGs|Ω contains all countable sequences of its
ordinals.

Proof. It is sufficient to show that every countable sequence of generators of
MB is in MBrGs. Thus let ~β “ x iγipβ̄iq | i P ω y. By Proposition 4.34(2), there

is a condition prss, bq P H and a sequence ~ξ with bγipξiq “ β̄i for each i P ω.

Then ~β “ xhζ,γipξiq | i P ω y PMBrGs.

This completes the proof of Lemma 4.30.

Before turning to the next section, which generalizes the construction of this
section in order to prove Main Lemma 3.11, we make two observations. The
first asserts that, although P p~F q differs from Prikry forcing in that conditions
in the forcing have incompatible ď˚-extensions, such extensions cannot force
incompatible information about the Chang model.
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Corollary 4.38. Suppose ϕ is a formula and that all parameters of ϕ are given
by standard forcing names which are established by the condition prss, bq P R.
Then the following are equivalent: (i) CBpζq |ù ϕ, (ii) There is s1 ď˚ s such that

iΩprs
1sq ,iΩpP p~Eæζq{Øq

ϕ, and (iii) prss, bq ,R CMBpζqr 9Gs |ù ϕ.

Proof. When G is constructed as in the proof of Lemma 4.30, Clause (i) holds if
and only if CMBrGs |ù ϕ. The construction can begin by choosing any condition
as a member of H, so this is equivalent to Clause (iii) since if Clause (iii) is false
then there is prss, b1q ď prss, bq which forces CMB rGs |ù  ϕ. Finally, Clause (ii)
is equivalent since by Lemma 4.16 there is s1 ď˚ s which decides the question,
and as with Clause (iii) it can only be decided one way.

Clause (i) uses the sequence Bpζq instead of allowing an arbitrary B because
the other two clauses are talking about facts which are internal to MB (or,
perhaps better, internal to MBrGs) in the sense that they do not take any
account of gaps in B.

The second observation is that, for limit suitable sequences B, the model
CB is definable in the model MBrGs constructed in Lemma 4.30.

Lemma 4.39. Suppose that B is a limit suitable sequence and G is the set
constructed above, and let B˝ be the set of heads of gaps of B. Then CB is a
submodel of MBrGs, definable in MBrGs using the parameters G,B and B˝.

Proof. By Definition 3.10, CB is equal to the set constructed by recursion over
the set of ordinals of MB |Ω, using as parameters for the successor step the set
D “

Ť

t rΩXMB̃s
ω | B̃ Ď B & B̃ is suitable u. Thus we need to verify that D

is definable in the indicated parameters. Now any member of D may be written
as in the form x iΩpfnqp~βnq | n P ω y where ~βn is a finite sequence of generators

in B̃ for some suitable B̃ Ď B. If we write ~B “ xβm | m P ω y for
Ť

nPω
~βn, then

each βm is a generator for some κ̄γm so that t κ̄γm | m P ω u Ď B̃. There will be

a sequence ~ξ PMB so that in MBrGs, γm “ hζ,γmpξmq; furthermore ~γ satisfies,
in MBrGs, the condition

@λ P B˝ supp~γ X λq ă λ. (10)

Thus it will be sufficient to show that for any sequences ~ξ P rΩ,Ω`qsω XMB

and ~γ P rBsω satisfying the condition (10), the sequence xhζ,γmpξmq | m P ω y
is in D.

Now since ~ξ P MB , there is a function f P M and a finite sequence ~µ of
generators such that ~ξ “ ipfqp~µq. Since ~µ is finite, we can assume, by expanding

B̃ if necessary, that ~µ and hence ~ξ is in MB̃ . Now let rss P G be a condition

with ξm P domainpas,ζζ,γmq Y domainpfs,ζζ,γmq for all m P ω. This partitions ω into
three subsets:

A0 “ tm P ω | ξm P domainpas,ζζ,γmq u

A1 “ tm P ω | ξm P domainpfs,ζζ,γmq & fs,ζζ,γmpξmq P Ω u

A2 “ tm P ω | ξm P domainpfs,ζζ,γmq & fs,ζζ,γmpξmq has the form hγ1m,γmpξ
1
mq. u
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The set xhζ,γmpξmq | m P A0 y is clearly in D, and xhζ,γmpξmq | m P A1 y

is a member of MB̃ and hence is in D. Now for m P A2 we have fs,ζζ,γm “

hγ1m,γmpξ
1
mq as a formal expression. For those m such that ξ1m R rκ̄γ1m , κ̄

`
γ1m
q we

have hζ,γmpξmq “ 0 by definition, and since x ξm | m P MB y, the genericity of
G ensures that tm P A2 | ξ

1
m P

“

κ̄γ1m , κ̄
`
γ1m

˘

u is finite.

4.7 Proof of the Main Lemma

The purpose of this subsection is to prove Lemma 3.11 with the simplifying
assumption that κ “ κ0 is a member of the limit suitable set B. The following
Subsection 4.8 will show how to remove this assumption, in the process giving
the technique for proving the stronger result Theorem 3.6.

Before beginning the proof, we state two general facts about iterated ultra-
powers. Both are well known facts, but we need to verify that they are valid in
the context in which they will be used.

Lemma 4.40. Suppose κ1 ď κ, E1 is an extender on κ1, and E is an extender
on κ such that rηsκ Ď UltpV,Eq for all η ă lengthpEq. Suppose further that if
κ1 “ κ then E1 Ÿ E, and if κ1 ă κ then lengthpE1q ă κ. Then the ultrapowers

by E and E1 commute, that is, ii
E1
pEq ˝ iE

1

“ iE
1

˝ iE.

Proof. This is a standard result in the case that E and E1 are both ultrafilters:
if κ1 ă κ then each of the iterated ultrapowers is given by a single ultrapower
by E1 ˆ E generated by the sets X Ă κ which contain a rectangle A ˆ B with
A P E1 and B P E. Here, for iE

1

˝ iE , if Xα “ tβ P κ | pα, βq P X u then

A “ tα P κ1 | Bα P E u and B “
Ş

αPABα, while for ii
E1
pEq ˝ iE

1

, A is such that
B “ tα | κ | A “ tβ | pα, βq u P X u P E. For the case κ1 “ κ, the rectangle
A ˆ B is replaced with a triangle t pα, βq | α ă κ ^ β ă gκpβq u where gκ is a
function such that κ “ rgκsE .

Now for extenders E and E1, we write Ea for the ultrafilter tx Ď κ | a P
iEpxq u. Then

UltpUltpV,Eq, E1q “ dir lim
aPsupppEq
a1PsupppE1q

UltpUltpV,Eaq, Ea1q

and hence can be mapped into UltpUltpV,E1q, iE
1

pEqq by

UltpUltpV,Eaq, E
1
a1q – Ult

´

UltpV,E1a1q, i
E1
a1 pEq

i
E1
a1 paq

¯

(11)

ă dir lim
a1PsupppE1q

aPsupppiE
1
pEqq

UltpUltpV,E1a1 , i
E1pEqaqq (12)

“ UltpUltpV,E1q, iE
1

pEqq.

It remains to verify that the map is onto. This is immediate, except that
in line (11) the only subscripts included for iE

1
a1 pEq are elements in the range
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of iE
1

, where as in line (12) any a P supppiE
1

pEqq is allowed. Now fix any
such a, and let ga be such that a “ rgasE1,a; (enlarging a1, if necessary). Then

UltpUltpV,E1a1 , i
E1pEqaqq Ď Ult UltpV,E1a1q, i

E1pEqiE1 pgaq, which is an instance of

the right side of line (11).

The extender used in this proof do not quite satisfy the hypothesis of Lemma 4.40
as stated, as they are not closed in ω1 sequences cofinal in supppEq. However
all the ultrapowers involved are ω2-complete, so the iteration maps are all con-
tinuous there, and so the conclusion applies. In the sequel, whenever we refer
to an iterated ultrapower we will mean one by extenders to which Lemma 4.40
applies.

Corollary 4.41. Any iterated ultrapower of a model M of set theory is equal
to an iterated ultrapower obtained by reordering the extenders used so that the
critical points are strictly increasing.

Proof. Since the iterated ultrapowers are the direct limits of the finite subit-
erations, it is enough to show this for finite iterated ultrapowers, but this is a
simple induction from Lemma 4.40.

Corollary 4.42. Suppose that M
k0
ÝÑM0 and M

k1
ÝÑM1 are iterated ultrapow-

ers, with every extenders used in k0 having critical point less than that of k1,
and with lengthpk1q ă critpk0q. Then k0pk1qpνq ě k1pνq for every ordinal ν.

Proof. Set κ equal to the smallest critical point of an extender in k1 and set δ
equal to the supremum of these critical points. Then we can regard k1 as given
by a single extender on the power set of δ, with supppk1q “

Ť

E in k1
supppEq

and having all constituent ultrafilters κ-complete.
Define the extender E by Ea “ tx Ď δ | a P k1pxq u for a P supppk1q. We will

show that for every g : δ Ñ Ω in M and a P supppk1q there is ḡ in M0 such that
t ν | gpνq “ ḡpk1pνqq u P Ea. This will give an order preserving mapping from
the ordinals of UltpM,k1q into those of UltpM0, k0pk1qq, proving the Corollary.

Given g, for each ν ă δ choose pgν , bνq with bν P supppk0q so that ν “
k0pgνqpbνq. Define ḡβpνq “ gνpβq. By the κ-completeness of Ea, there is b so
that B “ tβ P δ | bβ “ b u P Ea. Set ḡ “ k0px ḡβ | β ă λ yqpbq. Then for
all ν P B, we have ḡpk0pνqq “ k0px ḡβ | β ă λ yqpbqpk0pνqq “ k0px gβpνq | β ă
λ ypbq “ gpνq.

The next Corollary is a slight generalization of a classic result of Kunen
[Kun71]:

Corollary 4.43. For each ordinal α there is a finite set dα of regular cardinals
such that kpαq “ α for any iterated ultrapower k such that (i) kpdαqædα is the
identity, (ii) the set of critical points of extend ers in k is bounded in α, and
(iii) if k is factored k “ k1 ˝ k0, where all extenders in k1 have critical points
greater than any critical point of any extender in k0, then there is k11 so that
k1 “ k0pk

1
1q.
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Furthermore, this remains true for k in a generic extention, provided that

if k : V
k0
ÝÑ N0

k1
ÝÑ N1 is any factorization of k then k0pk1q is in a generic

extension of N1.

Proof. The sets dα are defined by recursion on α: we assume that the set dα1

has been defined and satisfy the conclusion for all α1 ă α and will use this to
define dα.

Say that a pair pd, δq fixes α if (i) d is a finite set of cardinals, (ii) δ P α,
(iii) the conclusion of Corollary 4.43 is true with dα replaced with dYδ. Clearly
the pair ptcfpαq, αu fixes α; we want to show that there is d so that pd, 0q fixes
α. Let δ be least such that there is d such that pd, δq fixes α. We will assume
that δ ą 0 and reach a contradiction.

Claim 4.43.1. Suppose that δ1 ă δ and the iteration k is a witness that pd, δ1q
does not fix α. Then the initial segment k0 of k with critical points below δ also
is such a witness.

Proof of Claim. Write k “ k1 ˝ k0, with k : V
k0
ÝÑ N0

k1
ÝÑ N1. The requirement

in the hypothesis that k1 “ k0pk
1
1q implies that k1 P N0, and by elementarity

N0 satisfies that pk0pdq, k0pδqq fixes k0pαq, but k1pk0pdqq “ kpdq “ d, and the
critical points of k1 are all above δ, so k1pk0pαqq “ k0pαq. Since kpαq ą α, it
follows that k0pαq ą α.

Claim 4.43.2. There is d such that for any witness k that pd, δ1q does not fix
α, there is an initial segment k0 of k with critical points bounded in δ which also
is such a witness.

Proof of Claim. Since the Claim is immediate if δ “ α, we can assume that dδ
is defined. We can also assume that α is not a regular cardinal, as in that case
we could take dα “ tαu. Let d Ě tcfpαq, cfpδqu Y dcfpαq Y dδ so that dν Ď d
for all ν P d. Since cfpαq P d, the embedding k is continuous at α; thus there
is some α1 ă α such that kpα1q ě α. Set ξ “ maxpδ X dα1 Y

Ť

νPdα1Ydδ
dνq.

Then kpξq ă δ, since the choice of d implies that kpδq “ δ. Let k0 be the initial
segment of k with critical points below kpξq and factor k “ k1 ˝ k0. As in the
proof of Claim 4.43.1, k1pk0pα

1qq “ k0pα
1q and hence k0pα

1q “ kpα1q ą α.

Now we are ready to conclude the proof. Fix k0 : V ÑM0. Set ξ “ suppdN0
α q,

which is defined because α ă k0pαq. I claim that δ1 “ ξ works. Otherwise let
k1 : V ÑM1 have all critical points in the interval rξ, ξ1q for some ξ1 ă δ be such
that k1pαq ą α. Then by Corollary 4.42 k0pk1qpαq ě k1pαq ą α, contradicting
the fact that k0pk1qæd

M0
α is the identity.

To see why the “furthermore” clause of the Corollary is true, note that a
critical point was that “there is a witness that pd, δq does not fix α” is a first
order statement.
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We are now ready to continue with the proof of Lemma 3.11. As was stated
earlier, the argument uses an induction on the lexicographic ordering of pairs
pι, ϕq to prove that for all limit suitable sequences B and all x in Cι X CB ,

CB |ùCι ϕpxq if and only if |ùCι
ϕpxq. (13)

Here and for the remainder of the paper, if P is a model of set theory then we
write P |ùCι

σ to mean that pCιqP |ù σ.

The statement (13) implicitly uses the induction hypothesis by assuming that
CB Ď C. This is not literally true; however the induction hypothesis implies
that CB is isomorphic to a submodel of Cι by the map defined recursively by
taking a set t y P Cι1 | Cι1 |ù ϕpy, aq uCB P pCιqCB to the set having the same
definition in C. For the rest of this section we will identify these two sets.

We will need an additional induction hypothesis in order to carry out the
proof. Because it is rather technical and uses notation which will be developed
during the proof of the induction step for Lemma 3.11, we defer its statement,
as Lemma 4.49, until it is needed to complete that proof.

By standard arguments, the only problematic part of the proof of the in-
duction step for Lemma 3.11 is the assertion that the existential quantifier is
preserved downwards: We assume that ψpx, yq is a formula which satisfies (13),
and want to prove that

@x P CB
`

|ùCι
Dy ψpx, yq ùñ CB |ùCι Dy ψpx, yq

˘

. (14)

Since the basic problem in the proof is dealing with gaps in B, it will be
useful to introduce some notation for them. A gap of B is a maximal nonempty
interval of IzB. Each gap in a limit suitable set B is a half open interval rσ, δqXI,
where σ is the supremum of an ω-sequence of members of B, and δ is either
minpBzσq or Ω. In either case we will call δ the head of the gap and the final
ω-sequence of B X δ, excluding the limit point, the tail. We will also refer to
any terminal subsequence of it as a tail. Note that if δ1 “ supppt0u Y Iq X σzBq
then the half open interval IXrδ1, σq is contained in B. We will call this a block
of B.

Recall that if B is limit suitable then CB is is defined to be the union
over all suitable subsequences B̃ Ă B of CB̃ . We will concentrate on suitable

subsequences B̃ which are maximal in the sense that (i) every head δ of a gap
of B is in B̃ (and therefore is also the head of a gap of B̃), (ii) these are the
only gaps of B̃, and (iii) if δ is the head of a gap of B then maxpB̃ X δq is a
member of the tail of that gap in B. Call a set b Ď B a tail traverse of B if
it contains exactly one point of the tail of each gap of B. If we write D for the
set of heads of gaps of B, then every tail traversal b corresponds to a maximal
suitable subset B̃ “ Bz

Ť

t rλ, δq | δ P D & λ “ maxpBX δq u “
Ť

t rδ1, λq | δ1 P
t0u YDztΩu & λ “ minpbzδ1q u; conversely, if B̃ is a maximal suitable subset
then b “ tminpδ X BzB̃q | δ P D u is a tail traversal. This divides each block
B Ď rδ1, δq of B into three parts: the initial segment rδ1, δq X B̃ “ rδ1, λq X I,
the singleton tλu “ bX rδ1, δq, and the tail B X pλ, δq of this block above λ.
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Now suppose that ϕpxq is the formula Dy ψpx, yq and is true in Cι, and that
B is a limit suitable sequence with x P CB . Fix a tail traversal b of B such that
tx, ιu Ď CB̃ , where B̃ is the suitable subsequence of B determined by b. Pick y
so |ùCι

ψpx, yq and let B1 Ě B be a limit suitable sequence with y P CB1 . By the

induction hypothesis CB1 |ùCι ψpx, yq.
We will define an iteration map k and an isomorphism σ as in Diagram (15).

MB1 MB1æ~η

M MB̃ MB Mk Mkæ~η

σ

kiΩ

(15)

Here the wavy arrow, , is used to indicate an isomorphism.
The map k will be an iterated ultrapower, definable in MBrcs from a count-

able sequence c P MB of ordinals. The indiscernibles added by this iteration
will be used for two distinct purposes: The first is to provide targets onto which
σ can map members of B1zB, and the second is to emulate the gaps of B1zB by
adding blocks of indiscernibles of order type ω1.

The map σ must also be defined on generators belonging to members of
B1zB. Since the extenders used in k will be members of MB , they cannot
provide enough generators to accomodate all of those in MB1 . Thus a submodel
MB1æ~η of MB1 will be used which can be accommodated in Mk, but is large
enough that MB̃ Ytyu ĎMB1æ~η. Corollary 4.43 will be used to ensure that the
restrictions of k and σ to ordinals in the suitable submodel MB̃ are the identity.

Since the iteration k can be defined in MBrcs, and thus in the generic exten-
sion of MB described in Subsection 4.6, the models MB and Mk have the same
ordinals and the same associated Chang model CB “ Ck. Thus Diagram (15)
induces the following diagram:

CB1 CB1æ~η

CB̃ CB Ck “ CB Ckæ~η

σ

k

(16)

With this machinery in place, we will be able to quickly complete the proof: we
are assuming |ùCι

ψpx, yq, so by the induction hypothesis CB1 |ùCι ψpx, yq. An easy

proof will give Lemma 4.47, stating that CB1æ~η ă CB1 , so CB1æ~η |ùCι Dyψpx, yq.
Fix y P CB1æ~η so that CB1æ~η |ùCι ψpx, yq. Since σ is an isomorphism, it follows

that Ckæ~η |ùCι ψpx, σpyqq.
The proof will be completed by showing that this implies Ck “ CB |ù

ψpx, σpyqq, but this step is more difficult than the step using Lemma 4.47 for the
upper level of the diagram. This argument uses the additional induction hypoth-
esis alluded to earlier: Lemma 4.49 is a slightly generalized form of the needed
fact which will conclude the proof of the induction step for Lemma 3.11. Finally,
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the full induction hypothesis, including the just proved fact that Lemma 3.11
holds for pι, ϕq, will be used to prove that Lemma 4.49 also holds for pι, ϕq;
this will complete the proof of Lemmas 3.11 and 4.49, and thus (except for the
assumption that κ0 P B) of Theorem 1.4.

We now give the details of the construction of Diagram (15). The four
models on the left of the diagram have already been defined: B is the given
limit suitable sequence, B̃ Ă B is a suitable subsequence with x PMB̃ which is
characterized by a tail traversal b of B, and B1 Ě B is a limit suitable sequence
with a witness y to Dyψpx, yq. The following definition is more general than
needed here. The added generality will be used in the proof of Lemma 4.49.

Definition 4.44. A virtual gap construction sequence for B is a triple pb, ~η, gq
satisfying the following conditions: (i) b is a tail traversal of B, (ii) ~η is a
sequence of countable ordinals with domain of the form t pλ, ξq | λ P b^ξ ă νλ u
for countable ordinals νλ, (iii) g is a set of pairs pλ, ξq P domainp~ηq with ξ a limit
ordinal, and finally (iv) ηλ,ξ ą otppt z P B Y domainpηq | z Ì pλ, ξq u, where
pB Y domainpηqq is the extension of the lexicographic order Ì on domainp~ηq to
B Y domainp~ηq defined by setting λ1 Ì pλ, ξq Ì λ whenever pλ, ξq P domainpηq
and λ1 P B X λ.

Definition 4.45. We will say that pb, ~η, gq is a virtual gap construction sequence
for B1 over B if (i) B1 and B are limit suitable sequences with B1 Ą B, (ii) B1

has the same order type as pB Y domainpηq,Ìq, and, letting τ be the order
isomorphism, there is a tail traversal b of B, and a tail traversal b1 of those
gaps in B1 which are also in B, such that if B̃ Ď B is the associated suitable
subsequence then (iii) τæB̃ is the identity, and τ maps b1 to b and the tail above
each λ1 P b1 to the tail above τpλq P b, and furthermore, (iv) g “ t τpγq |
γ is the head of a gap in B1zB u.

The virtual gap construction sequence pb, ~η, gq for B1 over B which will be
used for the construction of Diagram (15) is represented in Figure 3 by the points
in Mk, and the dotted lines connecting MB1 and Mk in that figure correspond to
the map τ . These are defined individually for each gap of B: Let rµ, δq be a gap
of B and rδ1, µq the corresponding block. In the case B1 X rδ1, δq “ B X rδ1, δq,
then τæB1 X rδ1, δq is the identity, b1 X rδ1, µqs “ b X rδ1, µq, and there are no
members of domainpgq in the interval rδ1, δqÌ.

Now assume that µ1 “ suppB1 X δq ą µ. Write λ for the member of b in
rδ1, δq and pick any member of the tail in B1 of this gap as a member of b1. In
accordance with clauses (iii) and (iv) of Definition 4.45, νλ “ otpprλ, λ1q X B1q
and g is the set of τpγq such that γ is the head of a gap in B1 X pλ, λ1q. The
function ~η is a constant function, with the constant value η chosen so that
(i) η ě ωω ¨ otppB1q and (ii) y P MB1æ~η, which is the submodel of MB1 defined
as follows:

Definition 4.46. If pb, ~η, gq is a virtual gap construction sequence for B1 over
B, then MB1æ~η “ t jΩpfqpaq | f P M ^ a P rGsăω u where G is the following
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set of generators: Let κν be a member of B1 and let β “ iνpβ̄q be a generator
belonging to κν . Then

β P G ðñ
`

τpκνq P B _
`

τpκνq “ pλ, ξq P domainp~ηq ^ β̄ P supppEηλ,ξq
˘˘

.

Note that MB̃ Ď MB1æ~η ă MB1 , and MB1 “
Ť

ηăκ`MB1æ~η, so y P MB1æ~η
for sufficiently large η.

Lemma 4.47. If pb, ηλ,ξ, gq is a virtual gap construction sequence for B1 over
B then CB1æ~η ă CB1 .

Proof. A slight modification of the construction from Subsection 4.6 yields a
MB1æ~η-generic subset G Ď iΩpP p ~Eæ otppB1qq so that MB1æ~ηrGs is closed under
countable sequences. The only change needed in the construction is the restric-
tion of the range of the coordinate bγ to supppEηλ,ξq whenever pλ, ξq P domainp~ηq
and κγ is the ξth member of B1 above λ.

Now suppose ϕ is a formula, with parameters given by standard forcing
names, which is true in CB1æ~η. By Lemma 4.38 there is a condition prrs, bq
in the forcing R for MB1æ~η which establishes the parameters of ϕ such that
rrs , ϕ. Now prrs, bq is also a condition in RMB1 , so we can use Section 4.6 to

yield a MB1 -generic subset G1 of iΩpP p ~Eæ otppB1qq which includes iΩprrsq and
establishes the same parameters. Hence ϕ holds in CMB1 rG

1
s “ CB1æ~η.

Clause 4.44(iv) is used here to ensure that the enough of the image of E at
each κν P B

1zB is present in MB1æ~η to construct the generic set as in section 4.6.
Now we want to complete the definition of the elements of Diagram (15) by

defining k and σ. The restriction of σ to B1 is determined by the map τ specified
in the Definition 4.44 of a virtual gap construction sequence for B1 over B: if
τpγq P B then σpγq “ kpτpγqq, and if τpγq “ pλ, ξq P domainp~ηq then σpγq is the
critical point of an ultrapower of λ in the iteration k. The restriction of σ to B1

determines its restriction to the generators of MB1æ~η, which determines in turn
the remainder of σ.

Thus it will be sufficient to define the iteration k, which consists of an ul-
trapower by the image of Eηz for each z P domain ~η and, in addition, for each
member of g an iteration of length ω1. For the latter we need to begin by
choosing a sequence ~F of extenders in M : a suitable choice is to let Fν be the
least κ`ν-strong extender in M for each ν ă ω1. The two essential conditions
that the choice of ~F must satisfy are (i) ~F P UltpM,Eq and (ii) ~F is cofinal
among the extenders below E in M . The first clause is needed so that for each
pξ, λq P g, if γ is such that λ “ κγ then iγp~F q P MB ; thus k is definable over
MB from a countable parameter in MBrGs. This fact will be used to identify
the ordinals of Mk with those of MB . The second clause is needed so that the
ordinal kpλ,ξq ˝ iγpκq, which will become σpτ´1pλqq, depends only on g, or more
precisely, on otppt ξ1 ă ξ | pξ1, λq P g uq; this fact ensures (using Lemma 4.43)
that the restriction of k to ordinals in MB is similarly independent of the choice
of B1. This fact will be needed for the proof of Lemma 4.49.

Here is the precise definition of k, which is illustrated by Figure 3.
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MB1æ~η Mkæ~η Mk MB
σ k

δ1

δ

maxpB̃ X δq
bδ

λ1 P b1 X rδ1, δq

λ P bX rδ1, δq

...tail of B1

... tail of B

gap in B1zB (typical)
...

...

Figure 3: The maps σ and k inside the block between δ1 and δ which is associated
with the gap in B headed by δ. The dotted lines represent the maps σ and k;
the vertical lines represent intervals of I contained in the indicated models.

Definition 4.48. The iteration k is the direct limit of the sequence of em-
beddings kz : MB Ñ M˚

z for z in the well ordering pB Y domainp~ηq,Ìq. In
the following, δ is the head of a gap in B and δ1 is the supremum of the set
of the heads of gaps below δ (or δ1 “ 0 if there are none). We assume that
kz : MB ÑM˚

z has been defined for all z Ì δ1. Let λ be the unique member of
bX rδ1, δq.

1. M0 “MB .

2. If z is a limit point in the ordering Ì and z R g then kz : MB ÑM˚
z is the

direct limit of the embeddings kz1 : MB ÑM˚
z1 for z1 Ì z.

3. If z “ τ P B is the successor in I of τ 1 then M˚
τ “ M˚

τ 1 and kτ “ kτ 1 .

Hence kτ “ kδ1 and M˚
τ “M˚

δ1 for all τ P B̃ X rδ1, δq, and kτ “ kλ`1 “ kδ
and M˚

τ “M˚
λ`1 “M˚

δ for all τ in the tail B X pλ, δq of B above λ.

4. If z “ pλ, ξ ` 1q P domainp~ηq, or if z “ λ and pλ, ξq is its immediate
predecessor in Ì, then M˚

z “ UltpM˚
pλ,ξq, E

˚
ηλ,ξ
q where, letting γ1 be such

that δ1 “ κγ1 , we write E˚α for kpλ,ξq ˝ iγ1pEαq.

5. If z “ pλ, ξq P g, then let k̄z : MB Ñ Mz be the direct limit of the maps

x kz1 | z
1 Ì z y. Then kz is the iterated ultrapower i

~F˚ ˝ k̄z : MB ÑMz Ñ

M˚
z , where ~F˚ “ k̄ ˝ iγ1p~F q
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This completes the definition of the map k. As pointed out earlier, this
induces the definition of σ by setting σpγq equal to the critical point of the

ultrapower iE
˚

τpzq`1 : M˚
τpzq Ñ M˚

τpzq`1, and thus completes the definition of the

maps of diagram (15). The extension to the Chang model illustrated in Dia-
gram (16) is straightforward. We have already observed that the Chang model
Ck built on Mk is the same as CB , giving the identity on the bottom of the
diagram. Lemma 4.47 asserts that CB1æ~η is an elementary substructure of CB1 ,
and σ : CB1æ~η Ñ Ckæ~η is an isomorphism. It follows that Ckæ~η |ùCι ψpx, σpyqq,
and we will be finished if we can conclude from this that that CB |ùCι ψpx, σpyqq,
and this is asserted by Lemma 4.49:

Lemma 4.49. Suppose that B Ď B1 are limit suitable sequences and ~η is a
virtual gap construction sequence for B1 over B such that ηλ,ξ ě ωn ¨ otppB Y
domainp~ηq,Ìq for all pλ, ξq P domainp~ηq and all n P ω. Let k : MB Ñ Mk

be the virtual gap construction iteration, and let Ckæ~η Ď Ck be as given in
Diagram (16). Then Ckæ~η ă C.

This is the promised addition to the induction hypothesis for Lemma 3.11,
and concludes the proof of the induction step for that Lemma. It remains only
to prove the induction step for Lemma 4.49:

Proof. As was stated earlier, this proof is a simultaneous induction along with
Lemma 3.11: we assume the following two conditions on a pair pι, ϕq as an
induction hypothesis:

1. Under the hypothesis of Lemma 3.11, CB |ùCι1 θp~aq ðñ |ùCι1
θp~aq for any

~a P Cι1 , provided that ι1 ă ι or ι1 “ ι and θ is a subformula of or equal to
ϕ.

2. Under the hypothesis of Lemma 4.49, Ckæ~η |ùCι1 θp~aq ðñ |ùCι1
θp~aq for all

~a P Ckæ~η, provided that ι1 ă ι or ι1 “ ι and θ is a proper subformula of ϕ.
The induction hypothesis used for Lemma 3.11 was the same, except that in

the first clause the formula θ was required to be a proper subformula of ϕ. As
in the proof of Lemma 3.11, the only problematic case with that in which ϕpxq
is the formula Dy ψpx, yq.

Let B and ~η be as in Lemma 4.49, and let x be an arbitrary member of Ckæ~η
such that |ùCι

Dyψpx, yq. We need to show that Ckæ~η |ùCι Dyψpx, yq. By clause (1)

of the induction hypothesis, CB |ùCι Dy ψpx, yq. Fix y P CB so that |ùCι
ψpx, yq.

We now define an extension ~η1 of the virtual gap construction sequence ~η such
that y P CBæ~η1. The sequence ~η1 will have the same sets b and g as ~η, but the
domain of ~η1 will be enlarged by adding ω new elements as a new tail for each
pλ, ξq P g. Thus, for each λ P b define a map tλ with domainptλq “ lengthp~ηλq
by

tλpξq “

$

’

’

’

&

’

’

’

%

0 if ξ “ 0,

tλpξ
1q ` 1 if ξ “ ξ1 ` 1,

supξ1ăξ tλpξ
1q if ξ is a limit and pλ, ξq R g

supξ1ăξ tλpξ
1q ` ω if pλ, ξq P g.
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Now define ~η1, using an ordinal η1 P ω1 to be determined shortly:

domainp~η1q “ t pλ, ξq | ξ ă sup rangeptλq u

b
~η1 “ b~η, and g

~η1 “ t pλ, tλpξq | pλ, ξq P g
~η u, and

η1λ,ξ “

#

ηλ,ξ1 if ξ “ tpξ1q

η1 if pλ, ξq R rangeptq.

As in the choice of η, the two conditions on η1 are that (i) η1 ě ωn ¨ otppBY

domainp~η1q,Ìq for each n P ω, and (ii) y P Ckæ~η1. Note that the first condition

implies that ~η1 satisfies the hypothesis of Lemma 4.49: if n P ω and ξ “ tλpξ
1q

then

η1λ,ξ “ ηλ,ξ1 ą ωn`1 ¨ otppB Y domainp~ηq,Ìq

“ ωn ¨ ω ¨ otppB Y domainp~ηq,Ìq ě ωn ¨ otppB Y domainp~η1q,Ìq.

The second condition will be satisfied by any sufficiently large η1, since CB “
Ck “

Ť

η1ăω1
Ckæ~η1.

For the remainder of the proof we refer to Diagram (17). The inner rectangle
is the same as Diagram (15). The map τ is determined by using the map
pλ, ξq ÞÑ pλ, tλpξqq to map the generators of indiscernibles from ~η into those of
~η1. As with Diagrams (15) and (16), Diagram (17) induces a similar diagram
for the corresponding Chang models.

MB2 MB2æ~η1

MB1 MB1æ~η

MB Mk Mkæ~η

Mk1 Mk1æ~η1

k

k1

σ

τ

σ1

τ

(17)

We claim that τæpCkæ~ηq is the identity. First, Lemma 4.43 implies that the
restriction of τ to the ordinals of Mkæ~η is the identity. Now every member Ckæ~η
is represented by a term w “ t z P Cι1 ||ùCι ϕpz, aq u, where ι1 PMkæ~η and a is a

sequence of ordinals from Mkæ~η. Thus τpwq is represented by the same term in
Ck1æ~η. But Ck “ Ck1 “ CB , so this term represents the same set w in Ck1 .

Now define B2 to be B1 together with the next ω-many members of I from
each of the gaps of B1 which are not gaps of B. The right-hand trapezoid
commutes, and in particular pσ1q´1pxq “ σ´1pxq. Now Ck1æ~η1 |ùCι Dyψpx, yq,
and since σ1 is an isomorphism it follows that CB2æ~η1 |ùCι Dyψpσ

´1pxq, yq. It
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follows by Lemma 4.47 that CB2 satisfies the same formula, and by the induction
hypothesis Lemma 3.11 for pι, ϕq it follows that |ùCι

Dyψpσ´1pxq, yq. By another

application of the same induction hypothesis it follows that CB1 satisfies the
same formula, and by Lemma 4.47 again CB1æ~η does as well. Finally, it follows
that Ckæ~η |ùCι Dyψpx, yq, as required.

This completes the proof of Lemma 3.11, and hence of Theorem 1.4, except
for the case that κ0 R B. This is dealt with in the next section.

4.8 Dealing with finite exceptions and κ0 R B

In the last subsection we assumed that κ0 “ κ is a member of B; here we indicate
how this extra assumption can be eliminated. The same argument supports the
possibility of finitely many exceptions in the statement of Theorem 3.6.

The problem is that since κ0 R B, the smallest member of B1 may be smaller
than the smallest member of B. This invalidates the definition of the map kη in
Diagram (15). Now suppose that B “ tλν | ν ď ζ u is a limit suitable set with
λ0 ą κ0, that x P CB , and that C |ù ϕpxq. We want to show that CB |ù ϕpxq.
Since B is limit suitable, λ0 ą κω. Let B1 “ B Y tκn | n ă ω u. Since B1 is
also limit suitable and κ0 P B

1, the version of Theorem 1.4(2) already proved
implies that CB1 |ù ϕpxq.

Now let G Ă iΩpP p ~Eæδq{Øq be the MB1 -generic set constructed in Sec-
tion 4.6 and consider the set G XMB . By appealing the the factorization of
P p ~Eæδq{Ø given by Proposition 4.14, we can regard G X M as a subset of

G1ˆG2 Ă iλ0pP p
~Eæωq{ØqˆR. The set G2 is a MB-generic subset of R, which

is essentially iΩpP p ~Eqæpω, ζq{Øq with some additional Cohen subsets, and G1

is an MB-generic subset of the direct forcing order, piλ0
pP p ~Eæωq{Ø,ď˚ {Øq.

Since x is in MB , it has a name in the forcing over MB1 which not involve any
of the indiscernibles κ̄n for n P ω, and because Dyψpx, yq is true in CB1 , there
is a condition rss P G1 which forces over MBrG

2s that Dyψpx, yq. Thus, extend-

ing G1 to a MB-generic subset Ḡ of the forcing order iλ0
pP p ~Eæωq{Øq,ďq will

give a model CMBrG
2
srḠs

ι which satisfies Dyψpx, yq. It is also true that any such
generic subset will yield an unbounded set of indiscernibles in λ0 XMB “ κ0,

and hence will collapse ω1. However, CMBrG
2
srḠs

B is defined in MBrG
2srḠs by

treating its set t κ̄n | n P ω u Y B of indiscernibles as a limit suitable set with

λ0 “ κ̄ as the head of a gap. This means that the members of CMBrG
2
srḠs

B are
the denotations of standard names, using as parameters sequences of ordinals

which are bounded in κ0. It follows that CMBrḠsrG
2
s

B is the same as CMBrGs
2

B ,
which is CB . Hence CB |ù Dyψpx, yq.

This concludes the proof of Lemma 3.11 and hence of Theorem 1.4, and
the same argument can be used to prove the generalization Theorem 3.6. Note
that it is critical to the argument that there are only a finite number of gaps
(in this case, only one gap) in B which need to be dealt with, for otherwise
B1zB would include infinitely many extra ω sequences, and CB1 would include
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Prikry sequences obtained by taking finitely many from indiscernibles each such
sequence, which are not in the extension MB1rGXMBs.

5 Questions and Problems

This study leaves a number of questions open. Two which were mentioned in
the introduction essentially involve filling gaps in this paper:

Question 5.1. What is the large cardinal strength of a sharp for C?

This question can be taken in either a coarse or fine sense. In the coarse
sense, we make the following conjecture:

Conjecture 5.2. If there is an extender model N “ LpRqr ~Es over the reals with

an extender E on ~E of length κ`pω`1q in N , then there is a mouse for the Chang
model.

If the conjecture is false, then it would be surprising if the coarse answer
to Question 5.1 were not given by Theorem 1.4, that is, that the sharp for the
Chang model is a R-mouse M “ JρpRqr ~Es, projecting to R, such that ~E has a
final extender E of length either κ`pω`1q or κ`ω1 in M , where κ is the critical
point of E. If we assume that this is correct, then we can state the finer version
of Question 5.1:

Question 5.3. What is the height ρ of this mouse?

If λ “ lengthpEq then ρ cannot be smaller than the index of E in the sequence
~E, which in the indexing of [MS94] is pρ`qM . It seems plausible that this is
sufficient.

We repeat here a second point which was raised in the introduction:

Question 5.4. Does the mouse asked for in the previous problems give a real
sharp? That is, is there can the choice of terms which eliminates the need for
restricted formulas in the Definition 1.3 of a sharp?

A solution to this question may require proving Conjecture 3.4 from the
introduction, which asserts that KpRqC is an iterated ultrapower of the model
MΩ|Ω.

The structure of this iteration j : MΩ|Ω Ñ KpRqC poses some interesting
questions:

Question 5.5. Is jpλq “ λ for every λ P I of cofinality ω?

Note that this would follow from an affirmative answer to Conjecture 5.2 by
the results of Gitik used to prove Theorem 1.4(1). Also, the same argument
shows that every cardinal of cofinality ω is measurable in KpRqC. On the other
hand, Gitik’s results which were adapted for our proof of Theorem 1.4(2) suggest
the following as a converse:

Question 5.6. Does every measurable cardinal of KpRqC have cofinality ω in
V ?

47



It seems likely that a positive solution to Question 5.4 would imply a positive
answer to Question 5.6 by extending an ultrafilter embedding from a measurable
cardinals of uncountable cofinality to an embedding of C into itself.

The remaining questions involve the ω1-Chang model, the least model of ZF
containing all ω1-sequences of ordinals.

Question 5.7. Is it consistent that there is a sharp for the ω1-Chang model
Cpω1q? If so, what is its strength?

Little is known about this. For the lower bound, Gitik’s technique for re-
covering extenders from threads given by iterations of length ω1 can be used to
show that it implies the existence of a Ppω1q-mouse with an extender of length
ω2. To obtain longer extenders from this technique would require having a cov-
ering lemma giving covering sets of size ω1 in KpPpω1qq

Cpω1q for sets of size ω1

in the ω1-Chang model; however all of the mice in Cpω1q contain Ppω1q and
hence are larger than ω1.
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